
Database Toolbox™

User’s Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Database Toolbox™ User’s Guide

© COPYRIGHT 1998–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1998 Online Only New for Version 1 for MATLAB® 5.2
July 1998 First Printing For Version 1
Online only June 1999 Revised for Version 2 (Release 11)
December 1999 Second printing For Version 2 (Release 11)
Online only September 2000 Revised for Version 2.1 (Release 12)
June 2001 Third printing Revised for Version 2.2 (Release 12.1)
July 2002 Online only Revised for Version 2.2.1 (Release 13)
November 2002 Fourth printing Version 2.2.1
June 2004 Fifth printing Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.1 (Release 14SP3)
March 2006 Online only Revised for Version 3.1.1 (Release 2006a)
September 2006 Online only Revised for Version 3.2 (Release 2006b)
October 2006 Sixth printing Revised for Version 3.2 (Release 2006b)
March 2007 Online only Revised for Version 3.3 (Release 2007a)
September 2007 Seventh printing Revised for Version 3.4 (Release 2007b)
March 2008 Online only Revised for Version 3.4.1 (Release 2008a)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.5.1 (Release 2009a)
September 2009 Online only Revised for Version 3.6 (Release 2009b)
March 2010 Online only Revised for Version 3.7 (Release 2010a)
September 2010 Online only Revised for Version 3.8 (Release 2010b)
reApril 2011 Online only Revised for Version 3.9 (Release 2011a)
September 2011 Online only Revised for Version 3.10 (Release 2011b)
March 2012 Online only Revised for Version 3.11 (Release 2012a)
September 2012 Online only Revised for Version 4.0 (Release 2012b)
March 2013 Online only Revised for Version 4.1 (Release 2013a)
September 2013 Online only Revised for Version 5.0 (Release 2013b)

Contents

Before You Begin

1
Working with Databases . 1-2
Connecting to Databases . 1-2
Platform Support . 1-2
Database Support . 1-2
Driver Support . 1-3
Structured Query Language (SQL) 1-4

Data Type Support . 1-5

Data Retrieval Restrictions . 1-7
Spaces in Table Names or Column Names 1-7
Quotation Marks in Table Names or Column Names 1-7
Reserved Words in Column Names 1-7

Working with Data Sources

2
Setting Up ODBC Data Sources . 2-2

Setting Up JDBC Data Sources . 2-3

Accessing Existing JDBC Data Sources 2-4

Modifying Existing JDBC Data Sources 2-5

Removing JDBC Data Sources . 2-6

Troubleshooting JDBC Driver Problems 2-7

v

Database Connection Error Messages 2-8

Database Explorer Error Messages 2-10

Using the Native ODBC Database Connection 2-12
About the Native ODBC Interface . 2-12
Native ODBC Interface Workflow . 2-12
Native ODBC, ODBC/JDBC Bridge and JDBC Interface
Comparison . 2-15

Compatibility and Limitations . 2-17

Using Visual Query Builder

3
Getting Started with Visual Query Builder 3-2
What Is Visual Query Builder? . 3-2
Using Queries to Import Data . 3-2
Using Queries to Export Data . 3-4

Working with Preferences . 3-6
Specifying Preferences . 3-6

Preference Settings for Large Data Import 3-10
Will All Data (Size n) Fit in a MATLAB Variable? 3-11
Will All of This Data Fit in the JVM Heap? 3-12
How Do I Perform Batching? . 3-12

Displaying Query Results . 3-15
How to Display Query Results . 3-15
Displaying Data Relationally . 3-15
Charting Query Results . 3-19
Displaying Query Results in an HTML Report 3-21
Displaying Query Results with MATLAB Report
Generator . 3-22

Fine-Tuning Queries Using Advanced Query
Options . 3-27

vi Contents

Retrieving All Occurrences vs. Unique Occurrences of
Data . 3-27

Retrieving Data That Meets Specified Criteria 3-29
Grouping Statements . 3-32
Displaying Results in a Specified Order 3-36
Using Having Clauses to Refine Group by Results 3-39
Creating Subqueries for Values from Multiple Tables 3-42
Creating Queries That Include Results from Multiple
Tables . 3-47

Additional Advanced Query Options 3-50

Retrieving BINARY and OTHER Data Types 3-51

Importing and Exporting BOOLEAN Data 3-54
Importing BOOLEAN Data from Databases 3-54
Exporting BOOLEAN Data to Databases 3-57

Saving Queries in Files . 3-59
About Generated Files . 3-59
VQB Query Elements in Generated Files 3-60

Using Database Explorer . 3-61
About Database Explorer . 3-61
Workflow . 3-62
Configure Your Environment . 3-62
Database Connection Error Messages 3-74
Set Database Preferences . 3-76
Display Data from a Single Database Table 3-78
Join Data from Multiple Database Tables 3-80
Define Query Criteria to Refine Results 3-85
Query Rules Using the SQL Criteria Panel 3-87
Query Example Using a Left Outer Join 3-89
Work with Multiple Databases . 3-98
Import Data to the MATLAB Workspace 3-98
Save Queries as SQL Code . 3-101
Generate MATLAB Code . 3-102

vii

Using Database Toolbox Functions

4
Getting Started with Database Toolbox Functions 4-2

Importing Data from Databases . 4-3

Viewing Information About Imported Data 4-5

Exporting Data to New Record in Database 4-8

Replacing Existing Database Data with Exported
Data . 4-12

Exporting Multiple Records from the MATLAB
Workspace . 4-14

Exporting Data Using the Bulk Insert Command 4-18
Bulk Insert to Oracle . 4-18
Bulk Insert to Microsoft SQL Server 2005 4-20
Bulk Insert to MySQL . 4-22

Retrieving Image Data Types . 4-25

Working with Database Metadata 4-27
Accessing Metadata . 4-27
Resultset Metadata Objects . 4-33

Using Driver Functions . 4-34

About Database Toolbox Objects and Methods 4-36

Using the exec Function . 4-39
About the exec Function . 4-39
Using Cursor Objects . 4-39
Working with Microsoft Excel . 4-40
Database Considerations . 4-40

viii Contents

Using the fetch Function . 4-42
About the fetch Function . 4-42
fetch Workflow . 4-42
Using fetch with a Cursor Object . 4-43
Database Considerations . 4-44

Functions — Alphabetical List

5

Index

ix

x Contents

1

Before You Begin

• “Working with Databases” on page 1-2

• “Data Type Support” on page 1-5

• “Data Retrieval Restrictions” on page 1-7

1 Before You Begin

Working with Databases

In this section...

“Connecting to Databases” on page 1-2

“Platform Support” on page 1-2

“Database Support” on page 1-2

“Driver Support” on page 1-3

“Structured Query Language (SQL)” on page 1-4

Connecting to Databases
Before you can use this toolbox to connect to a database, you must set up data
sources. For more information, see “Configuring Your Environment”.

Platform Support
This toolbox runs on all platforms that the MATLAB® software supports.

For more information, see Database Toolbox™ system requirements at
http://www.mathworks.com/products/database/requirements.html.

Note This toolbox does not support running MATLAB software sessions with
the -nojvm startup option enabled on UNIX® platforms. (UNIX is a registered
trademark of The Open Group in the United States and other countries.)

Database Support
This toolbox supports importing and exporting data from any ODBC- and/or
JDBC-compliant database management system, including:

1-2

http://www.mathworks.com/products/database/requirements.html

Working with Databases

• IBM DB2®

• IBM® Informix®

• Ingres®

• Microsoft® Access™

• Microsoft Excel®

• Microsoft SQL Server®

• MySQL®

• Oracle®

• PostgreSQL (Postgres)

• Sybase® SQL Anywhere®

• Sybase SQL Server®

If you are upgrading an earlier version of a database, you need not do
anything special for this toolbox. Simply configure the data sources for the
new version of the database application as you did for the original version.

Driver Support
This toolbox requires a database driver. Typically, you install a driver when
you install a database. For instructions about how to install a database
driver, consult your database administrator.

On Microsoft Windows® platforms, the toolbox supports Open Database
Connectivity (ODBC) drivers and Oracle Java® Database Connectivity
(JDBC) drivers.

1-3

1 Before You Begin

Note If you receive this message:

Invalid string or buffer length.

you might be using the wrong driver.

The JDBC-ODBC bridge is known to have issues with 64-bit database
systems. Use a JDBC driver or the native ODBC interface to connect to
these databases.

On UNIX platforms, the toolbox supports Java Database
Connectivity (JDBC) drivers. If your database does not ship with
JDBC drivers, download drivers from the Oracle JDBC Web site at
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-0

Structured Query Language (SQL)
This toolbox supports American National Standards Institute (ANSI®)
standard SQL commands.

1-4

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Data Type Support

Data Type Support
You can import the following data types into the MATLAB Workspace and
export them back to your database:

• BOOLEAN

• CHAR

• DATE

• DECIMAL

• DOUBLE

• FLOAT

• INTEGER

• LONGCHAR

• NUMERIC

• REAL

• SMALLINT

• TIME

• TIMESTAMP

Note When importing TIMESTAMP data into MATLAB, you might get
an incorrect value near the daylight savings time change. Possible
workarounds are to convert TIMESTAMP data to strings in your SQL query,
and then convert them back to your desired type in MATLAB, or try using
a different driver for your database.

• TINYINT

1-5

1 Before You Begin

Note Database Toolbox interprets the TINYINT data type as BOOLEAN and
imports it into the MATLAB workspace as logical true (1) or false (0).
For more information about how Database Toolbox handles BOOLEAN data,
see “Importing and Exporting BOOLEAN Data” on page 3-54.

• VARCHAR

• NTEXT

You can import data of types not included in this list into the MATLAB
Workspace. However, you might need to manipulate such data before you
can process it in MATLAB.

Note Data types LONGCHAR and NTEXT are not supported for the native ODBC
interface.

1-6

Data Retrieval Restrictions

Data Retrieval Restrictions

In this section...

“Spaces in Table Names or Column Names” on page 1-7

“Quotation Marks in Table Names or Column Names” on page 1-7

“Reserved Words in Column Names” on page 1-7

Spaces in Table Names or Column Names
Microsoft Access supports the use of spaces in table and column names, but
most other databases do not. Queries that retrieve data from tables and fields
whose names contain spaces require delimiters around table names and field
names. In Access, enclose the table names or field names in quotation marks,
for example, "order id". Other databases use different delimiters, such as
brackets, []. In Visual Query Builder, table names and field names that
include spaces appear in quotation marks.

Quotation Marks in Table Names or Column Names
Do not include quotation marks in table names or column names. The
Database Toolbox software does not support data retrieval from table and
column names that contain quotation marks.

Reserved Words in Column Names
You cannot use the Database Toolbox software to import or export data in
columns whose names contain database reserved words, such as DATE or
TABLE.

1-7

1 Before You Begin

1-8

2

Working with Data Sources

• “Setting Up ODBC Data Sources” on page 2-2

• “Setting Up JDBC Data Sources” on page 2-3

• “Accessing Existing JDBC Data Sources” on page 2-4

• “Modifying Existing JDBC Data Sources” on page 2-5

• “Removing JDBC Data Sources” on page 2-6

• “Troubleshooting JDBC Driver Problems” on page 2-7

• “Database Connection Error Messages” on page 2-8

• “Database Explorer Error Messages” on page 2-10

• “Using the Native ODBC Database Connection” on page 2-12

2 Working with Data Sources

Setting Up ODBC Data Sources
For instructions on setting up ODBC data sources, see “Configure ODBC
Data Sources”.

2-2

Setting Up JDBC Data Sources

Setting Up JDBC Data Sources
For instructions on setting up JDBC data sources, see “Configure JDBC Data
Sources”.

2-3

2 Working with Data Sources

Accessing Existing JDBC Data Sources
To access an existing data source from Visual Query Builder in future
MATLAB sessions:

1 In Visual Query Builder, select Query > Define JDBC data source.

2 In the Define JDBC data sources dialog box, click Use Existing File.

3 In the Specify Existing JDBC data source MAT-file dialog box, select the
MAT-file that contains the data sources you want to use and click Open.

The data sources in the selected MAT-file appear in the Define JDBC data
sources dialog box.

4 Click OK to close the Define JDBC data sources dialog box. The data
sources now appear in the Visual Query Builder Data source list.

2-4

Modifying Existing JDBC Data Sources

Modifying Existing JDBC Data Sources
1 Access the existing data source as described in “Accessing Existing JDBC
Data Sources” on page 2-4.

2 Select the data source in the Define JDBC Data Sources dialog box.

3 Modify the data in the Driver and URL fields.

4 Click Add/Update.

5 Click OK to save your changes and close the Define JDBC data sources
dialog box.

2-5

2 Working with Data Sources

Removing JDBC Data Sources
1 Access the existing data source as described in “Accessing Existing JDBC
Data Sources” on page 2-4.

2 Click Remove.

3 Click OK to save your changes and close the Define JDBC data sources
dialog box.

2-6

Troubleshooting JDBC Driver Problems

Troubleshooting JDBC Driver Problems
This section describes how to address common data source access problems,
in which selecting a data source in the Visual Query Builder list produces
an error, or the data source is not in the list as expected. There are several
potential causes for these issues:

• The database is unavailable, or there are connectivity problems. Try
selecting the data source in VQB again. If you are still unable to access the
data source, contact your database administrator.

• You ran the clear all command in the MATLAB Command Window after
you defined a JDBC data source. In this case, redefine the data source by
following the instructions in “Configure JDBC Data Sources”.

2-7

2 Working with Data Sources

Database Connection Error Messages
Connection Error Messages and Probable Causes

Vendor Error Message Probable Causes

All Unable to find JDBC driver. • Path to the JDBC driver jar file is
not on the static or dynamic class
path.

• Incorrect driver name provided
while using the 'driver' and
'url' syntax.

All [Microsoft][ODBC Driver Manager]
The specified DSN contains an
architecture mismatch between Driver
and Application

You tried to open a 32-bit application
when running MATLAB in 64-bit
mode. Restart MATLAB to run in
32-bit mode using the command
matlab win32.

Microsoft SQL
Server

The TCP/IP connection to the host
hostname, port portnumber has failed.
Error: “null. Verify the connection
properties, check that an instance of
SQL Server is running on the host and
accepting TCP/IP connections at the
port, and that no firewall is blocking
TCP connections to the port.”

Incorrect server name or port
number. Microsoft SQL Server
uses a dynamic port for JDBC and
the value should be verified using
Microsoft SQL Server Configuration
Manager.

Microsoft SQL
Server

This driver is not configured for
integrated authentication.

The Microsoft SQL Server Windows
authentication library is not added
to librarypath.txt. For more
information, see the database
example for Microsoft SQL Server
Authenticated Database Connection.

2-8

Database Connection Error Messages

Connection Error Messages and Probable Causes (Continued)

Vendor Error Message Probable Causes

Microsoft SQL
Server

Invalid string or buffer length. 64-bit ODBC driver error. Use a
JDBC driver or the native ODBC
interface instead.

MySQL Access denied for user
'user'@'machinename' (using
password: YES)

Incorrect user name and password
combination.

MySQL Communications link failure.
The last packet sent successfully to
the server was 0 milliseconds ago. The
driver has not received any packets
from the server.

Incorrect server name or port
number.

MySQL Unknown database 'databasename'. Provided database name is incorrect.

Oracle Error when connecting to Oracle oci8
database using JDBC driver:

Error using com.mathworks.toolbox.database.databaseConnect/makeDatabaseConnection

Java exception occurred:

java.lang.UnsatisfiedLinkError: no ocijdbc11 in

java.library.pathat

java.lang.ClassLoader.loadLibrary(Unknown Source)at

java.lang.Runtime.loadLibrary0.......

MATLAB cannot find the Oracle
DLL that the oci8 drivers need. To
correct the problem, add the path for
the location of the Oracle DLLs to
$MATLAB/toolbox/local/librarypath.txt.

Oracle Invalid Oracle URL specified:

OracleDataSource.makeURL

DriverType parameter is not
specified.

Oracle The Network Adapter could not
establish the connection.

Either Server or Portnumber is not
specified or has an incorrect value.

See Also database

2-9

2 Working with Data Sources

Database Explorer Error Messages
Database Explorer Error Messages and Probable Causes

Vendor Position of
Error

Error Message Probable Causes

All Error occurs
in the
Connection
Failure
dialog
box after
clicking
Connect
in the
Connect
to a data
source
dialog box.

[Microsoft][ODBC Driver
Manager] Data source name
not found and no default driver
specified

JDBC data sources created by
Visual Query Builder cannot
be used in Database Explorer.
You must run the following
command: setdbprefs(...
'JDBCDataSourceFile','')
and then create a new JDBC
data source from Database
Explorer.

All Error occurs
in the
Connect
to a data
source
dialog box.

[Microsoft][ODBC Driver
Manager] The specified DSN
contains an architecture
mismatch between Driver
and Application

You tried to open a 32-bit
application when running
MATLAB in 64-bit mode.
Restart MATLAB to run
in 32-bit mode using the
command matlab win32.

Microsoft
Access

Error occurs
in the
Connection
Failure
dialog
box after
clicking
Connect
in the
Connect
to a data
source
dialog box.

[Microsoft][ODBC Microsoft
Access Driver] ‘(unknown)’ is not
a valid path. make sure that the
path name is spelled correctly
and that you are connected to the
server on which the file resides

The file location of the
Microsoft Access database is
incorrect. Verify the location
of the database file and modify
the existing file location by
selecting New > ODBC and
selecting the existing database
name from ODBC Data
Source Administrator dialog
box. Then select Configure
to change the database file
location.

2-10

Database Explorer Error Messages

Database Explorer Error Messages and Probable Causes (Continued)

Vendor Position of
Error

Error Message Probable Causes

Microsoft
SQL Server

Error occurs
In the Data
Preview
Error
dialog
box after
selecting a
column of a
table in the
Database
Browser
pane.

Invalid Object Name catalog
name.table name

You must select the
appropriate schema name
in Database Explorer using the
Catalog/Schema address bar
above the table columns tree.

Oracle Error occurs
inside the
Database
Browser
pane.

No tables found in this schema
Consider changing the schema.

This error occurs when using
the Oracle ODBC driver
because of a problem in
the JDBC-ODBC bridge.
Please switch your database
connection to use a JDBC
driver. For more information,
see “Configure JDBC Data
Sources”.

2-11

2 Working with Data Sources

Using the Native ODBC Database Connection

In this section...

“About the Native ODBC Interface” on page 2-12

“Native ODBC Interface Workflow” on page 2-12

“Native ODBC, ODBC/JDBC Bridge and JDBC Interface Comparison” on
page 2-15

“Compatibility and Limitations” on page 2-17

About the Native ODBC Interface
The native ODBC interface is a C++ library that allows direct communication
with the ODBC driver instead of using the Oracle JDBC/ODBC bridge. This
eliminates issues from using the bridge and eliminates heap memory outages
caused by the JVM™ heap memory restrictions. Using the native ODBC
interface results in an improved data import and export experience, especially
when working with large amounts of data.

Native ODBC Interface Workflow
This example shows how to connect to a database using the native ODBC
interface, execute an SQL statement and fetch the returned data, insert data,
and then close the connection.

Connect to the Database Using the Native ODBC Interface

Connect to the database with the ODBC data source name, dbtoolboxdemo,
using the user name, admin, and password, admin.

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin');

database.ODBCConnection returns conn as a database.ODBCConnection
object.

Import Data Using the Native ODBC Interface

2-12

Using the Native ODBC Database Connection

Select data in column productDescription from productTable using the
database connection, conn. Assign the returned cursor object to the variable
curs.

curs = exec(conn,'select productDescription from productTable');

With the native ODBC interface, exec returns curs as an ODBCCursor
Object instead of a Database Cursor Object.

Note The native ODBC interface has a default batch size of 100,000 that
enables acceptable performance. To override this value, you must use
setdbprefs as follows. Set FetchInBatches to yes and set FetchBatchSize
to a specific batch size number <h>.

setdbprefs('FetchInBatches','yes')
setdbprefs('FetchBatchSize','<h>')

Use fetch to import all data into the cursor object curs, and store the data in
a cell array contained in the cursor object field curs.Data.

curs = fetch(curs);

View the contents of the Data element in the cursor object curs.

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

2-13

2 Working with Data Sources

Export Data Using the Native ODBC Interface

Define the columns of data to insert in the cell array colnames.

colnames = {'productNumber','stockNumber','supplierNumber',...
'unitCost','productDescription'}

colnames =

Columns 1 through 3

'productNumber' 'stockNumber' 'supplierNumber'

Columns 4 through 5

'unitCost' 'productDescription'

Define the data for the row to insert in the cell array coldata.

coldata = {11,800999,1006,9.00,'Toy Car'}

coldata =

[11] [800999] [1006] [9] 'Toy Car'

Insert the data in coldata into the productTable with the defined column
names, colnames.

insert(conn,'productTable',colnames,coldata);

Caution: The Microsoft Access ODBC driver demonstrates unexpected
behavior during large inserts. When inserting large amounts of data with
Microsoft Access, insert the data in batches. For example, if you want to
insert 100,000 rows of data, insert 10,000 rows at a time.

Close the cursor object, curs, and then close the database connection, conn.

close(curs);
close(conn);

2-14

Using the Native ODBC Database Connection

Caution: Leaving cursor and connection objects open or overwriting open
objects can result in unexpected behavior. Once you are finished working with
these objects, you must close them using close.

Native ODBC, ODBC/JDBC Bridge and JDBC Interface
Comparison
This table highlights the differences between using the native ODBC,
ODBC/JDBC bridge, and JDBC interfaces to access and manipulate data in
a database.

Item Native ODBC ODBC/JDBC
Bridge

JDBC

Connection
function

Use
database.ODBCConnection

Use database Use database

Actions Can perform the
following actions:

• Query data
(exec)

• Import data
(fetch)

• Run stored
procedure
(exec)

• Export data
(insert,
fastinsert)

• Close
connection
(close)

Can perform the
following actions:

• Query data
(exec)

• Import data
(fetch)

• Export data
(insert,
fastinsert,
datainsert,
update)

• Run stored
procedure
(exec,
runstoredprocedure)

• Retrieve
metadata
(dmd, tables,
columns,

Can perform the
following actions:

• Query data
(exec)

• Import data
(fetch)

• Export data
(insert,
fastinsert,
datainsert,
update)

• Run stored
procedure
(exec,
runstoredprocedure)

• Retrieve
metadata
(dmd, tables,
columns,

2-15

2 Working with Data Sources

Item Native ODBC ODBC/JDBC
Bridge

JDBC

database.catalogs,
and many
others)

• Use Database
Explorer
(dexplore)

• Close
connection
(close)

database.catalogs,
and many
others)

• Use Database
Explorer
(dexplore)

• Close
connection
(close)

Underlying
technology

C++ Java Java

Memory
performance

Restricted
by MATLAB
memory, but
not JVM heap
memory

Restricted by
both JVM
heap memory
and MATLAB
memory

Restricted by
both JVM
heap memory
and MATLAB
memory

Data access
performance

Fastest Slowest Medium

64-bit systems No major issues Several known
issues with
connectivity and
data access

No major issues

Data type
support

Long data types
are not supported
(e.g. LONG, BLOB,
etc.)

Long data types
are supported

Long data types
are supported

Note For more information about the database.ODBCConnection syntax,
see the native ODBC interface example in database.

2-16

Using the Native ODBC Database Connection

Compatibility and Limitations
The native ODBC interface has the following compatibility and limitation
considerations:

• Native ODBC database connections are supported on MATLAB 32-bit and
64-bit versions using the database function. The native ODBC interface
supports 64-bit database vendors. This interface is backward compatible
for 32-bit versions. The bitness of MATLAB must always match the bitness
of the database driver.

• The native ODBC interface is available only for the command line. You
cannot use Database Explorer to access the native ODBC interface.

• The native ODBC interface does not support long data types such as Oracle
LONG and SQL Server NTEXT. If you get one of the following errors, you are
accessing an unsupported data type:

- Driver unable to retrieve length for column number: <index
of column in the query>

- Out of memory. Type HELP MEMORY for your options.

Concepts • “Using the exec Function” on page 4-39
• “Using the fetch Function” on page 4-42

2-17

2 Working with Data Sources

2-18

3

Using Visual Query Builder

• “Getting Started with Visual Query Builder” on page 3-2

• “Working with Preferences” on page 3-6

• “Preference Settings for Large Data Import” on page 3-10

• “Displaying Query Results” on page 3-15

• “Fine-Tuning Queries Using Advanced Query Options” on page 3-27

• “Retrieving BINARY and OTHER Data Types” on page 3-51

• “Importing and Exporting BOOLEAN Data” on page 3-54

• “Saving Queries in Files” on page 3-59

• “Using Database Explorer” on page 3-61

3 Using Visual Query Builder

Getting Started with Visual Query Builder

In this section...

“What Is Visual Query Builder?” on page 3-2

“Using Queries to Import Data” on page 3-2

“Using Queries to Export Data” on page 3-4

What Is Visual Query Builder?
Visual Query Builder (VQB) is an easy-to-use graphical user interface (GUI)
for exchanging data with your database. To start VQB, use querybuilder.
You can use VQB to:

• Build queries to retrieve data by selecting information from lists instead of
using MATLAB functions.

• Store data retrieved from a database in a MATLAB cell array, structure, or
numeric matrix.

• Process the retrieved data using the MATLAB suite of functions.

• Display retrieved information in relational tables, reports, and charts.

• Export data from the MATLAB workspace into new rows in a database.

Using Queries to Import Data
The following steps summarize how to use VQB to import data.

3-2

Getting Started with Visual Query Builder

��������	
���

���

���
������

��
�
�����
������� ��
������
	���

�������

��
������

�������

��
������

����	�
��

����������� ����
�����
�������
��
�����

�!���
��	
��
���
���"����

�� #�����$����%
��
����
�����
�������
��
&'()'*
'����
+	�����

, ���

����������
���
	���
����������

�- ����
���	
��	
���
�������
��	
.�������
&$������

/ ������
������

0 ����
�1)
�����"����

2�
'���.�
��������
���
��������

(�
�����
�!�
������
1����
*���	��
��
�
��������	
��
��
�!�
&'()'*

��"
��

-

������

������.

��	
��!�"��

3-3

3 Using Visual Query Builder

For a step-by-step example of how to use queries to import data into the
MATLAB workspace from a database, see “Using Queries to Import Database
Data”.

Using Queries to Export Data
The following steps summarize how to use VQB to export data.

3-4

Getting Started with Visual Query Builder

��������	
���

,�

���
������

��
�
�����
��	�
�� ��
������
	���

�������

��
������

�������

��
������
����	�

��
�!��!
��

�3
���
	����

2 ����
���	
��	
���
�������
���

����������
���
�3
�����.
45))�
��	
.�������
&$������

0 ����
&'()'*
�����"����

/� �
�����
��������
���������.
	���
��
�3
����

(�
�����
�!�
������
1����
*���	��
��
�
��������	
��
��
�!�
&'()'*

��"
��

-

������

������.

��	
��!�"��

For a step-by-step example of how to use queries to export data from the
MATLAB workspace to a database, see “Using Queries to Export Data to
Databases”.

3-5

3 Using Visual Query Builder

Working with Preferences

Specifying Preferences
Database Toolbox preferences enable you to specify:

• How NULL data in a database is represented after you import it into the
MATLAB workspace

• The format of data retrieved from databases

• The method of error notification

• The preference for fetching in batches

1 From Visual Query Builder, select Query > Preferences. The Preferences
dialog box appears. Alternatively, from the MATLAB Toolstrip, click
Preferences and select Database Toolbox.

3-6

Working with Preferences

3-7

3 Using Visual Query Builder

2 Specify the Preferences settings as described in the following table.

Preference
Acceptable
Values Description

Read
NULL
strings as:

null (default) Specifies how NULL strings appear after being fetched from a
database.

Read
NULL
numbers
as:

Nan (default) Specifies how NULL numbers appear after being fetched from a
database. If you accept the default value for this field, NULL data
imported from databases into the MATLAB workspace appears
as NaN. Setting this field to 0 causes NULL data imported into the
MATLAB workspace to appear as 0s.

Write
NULL
strings as:

null (default) Specifies how NULL strings appear after being exported to a
database. This setting does not apply to Database Explorer
(dexplore).

Write
NULL
numbers
as:

Nan (default) Specifies how NULL numbers appear after being exported to a
database. This setting does not apply to Database Explorer
(dexplore).

Data
return
format

cell array,
numeric,
structure, or
dataset

Select a data format based on the type of data you are importing,
memory considerations, and your preferred method of working
with retrieved data.

• cellarray (default) — Imports nonnumeric data into
MATLAB cell arrays.

• numeric — Imports data into MATLAB matrix of doubles.
Nonnumeric data types are considered NULL and appear as
specified in the Read NULL numbers as: setting. Use
only when data to retrieve is in numeric format, or when
nonnumeric data to retrieve is not relevant.

• structure— Imports data into a MATLAB structure. Use for
all data types. Facilitates working with returned columns.

• dataset— Imports data into MATLAB dataset objects. This
option requires Statistics Toolbox™.

This setting does not apply to Database Explorer (dexplore).
If you are using Database Explorer, the data return format is

3-8

Working with Preferences

Preference
Acceptable
Values Description

specified using Imported Data panel in the Database Explorer
interface.

Error
handling

store, report,
or empty

• Set this field to store or empty to direct errors to either a
dialog box when using Visual Query Builder or a message field
when using the Database Toolbox command line interface.

• Set this field to report to display query errors in the MATLAB
Command Window.

This setting does not apply to Database Explorer (dexplore).

Cursor
Fetch

Fetch In
Batches and
Batch Size

Specifies if fetch retrieves data in batches with a user-defined
Batch Size. The default Batch Size is 1,000. For more
information, see “Preference Settings for Large Data Import”
on page 3-10.

This setting does not apply to Database Explorer (dexplore).
If you are using Database Explorer, the import batch size is
specified using Preferences on the Database Explorer Toolstrip.

3 Click OK. For more information about Preferences, see the setdbprefs
function reference page.

3-9

3 Using Visual Query Builder

Preference Settings for Large Data Import

In this section...

“Will All Data (Size n) Fit in a MATLAB Variable?” on page 3-11

“Will All of This Data Fit in the JVM Heap?” on page 3-12

“How Do I Perform Batching?” on page 3-12

When using the setdbprefs to set 'FetchInBatches' and 'FetchBatchSize'
or the Cursor Fetch option for the Preference dialog box, use the following
guidelines to determine what batch size value to use. These guidelines are
based on evaluating:

• The size of your data (n rows) to import into MATLAB

• The JVM heap requirements for the imported data

The general logic for making these evaluations are:

• If your data (n rows) will fit in a MATLAB variable, then will all your data
fit in the JVM heap?

- If yes, use the following preference setting:

setdbprefs('FetchInBatches','no')

- If no, evaluate h such that h < n and data of size h rows fits in the JVM
heap. Use the following preference setting:

setdbprefs('FetchInBatches','yes')
setdbprefs('FetchBatchSize','<h>')

• If your data (n rows) will not fit in a MATLAB variable, then:

- Evaluate m such that m < n and the data of size m rows fits in a
MATLAB variable.

- Evaluate h such that h < m < n and data of size h rows fits in the JVM
heap. Use the following preference setting:

setdbprefs('FetchInBatches','yes')
setdbprefs('FetchBatchSize','<h>')

3-10

Preference Settings for Large Data Import

Then import data using fetch or runsqlscript by using the value 'm'
to limit the number of rows in the output:

curs = fetch(curs,<m>)

or

results = runsqlscript(conn,<filename>.sql,'rowInc','<m>')

• If you are using the native ODBC interface to import large amounts of
data, you do not need to change these settings because the native ODBC
interface always fetches data in batches of 100,000 rows. You can still
override the default batch size by setting 'FetchInBatches' to 'yes'
and 'FetchBatchSize' to a number of your choice. Note that JVM heap
memory restrictions do not apply in this case since the native ODBC
interface is a C++ API.

Will All Data (Size n) Fit in a MATLAB Variable?
This example shows how to estimate the size of data to import from a
database.

It is important to have an idea of the size of data that you are looking to
import from a database. Finding the size of the table(s) in the database can be
misleading because MATLAB representation of the same data is most likely
going to consume more memory. For instance, say your table has one numeric
column and one text column and you are looking to import it in a cell array.
Here is how you can estimate the total size.

data = {1001, 'some text here'};
whos data

Name Size Bytes Class Attributes

data 1x2 156 cell

If you are looking to import a thousand rows of the table, the approximate size
in MATLAB would be 156 * 1000 = 156 KB. You can replicate this process for
a structure or a dataset depending on which data type you want to import the
data in. Once you know the size of data to be imported in MATLAB, you can

3-11

3 Using Visual Query Builder

determine whether it fits in a MATLAB variable by executing the command
memory in MATLAB.

A conservative approach is recommended here so as to take into account
memory consumed by other MATLAB tasks and other processes running on
your machine. For example, even if you have 12 GB RAM and the memory
command in MATLAB shows 14 GB of longest array possible, it might still be
a good idea to limit your imported data to a reasonable 2 or 3 GB to be able to
process it without issues. Note that these numbers vary from site to site.

Will All of This Data Fit in the JVM Heap?
This example shows how to determine the size of the JVM heap.

The value of your JVM heap can be determined by selecting MATLAB
Preferences and General > Java Heap Memory. You can increase this
value to an allowable size, but keep in mind that increasing JVM heap reduces
the total memory available to MATLAB arrays. Instead, consider fetching
data in small batches to keep a low to medium value for heap memory.

How Do I Perform Batching?
There are three different methods based on your evaluations of the data size
and the JVM heap size. Let n be the total number of rows in the data you are
looking to import, m be the number of rows that fit in a MATLAB variable,
and h be the number of rows that fit in the JVM heap.

Method 1 — Data Does Not Fit in MATLAB Variable or JVM
Heap
If your data (n) does not fit in a MATLAB variable or a JVM heap, you need to
find h and m such that h < m < n.

To use automated batching to fetch those m rows in MATLAB:

setdbprefs('FetchInBatches','yes')
setdbprefs('FetchBatchSize','<h>')

If using exec, fetch, and connection object conn:

3-12

Preference Settings for Large Data Import

curs = exec(conn,'Select .');
curs = fetch(curs,<m>);

If using runsqlscript to run a query from an SQL file:

results = runsqlscript(conn,'<filename>.sql','rowInc','<m>')

Once you are done processing these m rows, you can import the next m
rows using the same commands. Keep in mind, however, that using the
same cursor object curs for this results in the first curs being overwritten,
including everything in curs.Data.

Note If 'FetchInBatches' is set to 'yes' and the total number of rows
fetched is less than 'FetchBatchSize', MATLAB shows a warning message
and then fetches all the rows. The message is Batch size specified was
larger than the number of rows fetched.

Method 2 — Data Does Fit In MATLAB Variable But Not in JVM
Heap
If your data (n) does fit in a MATLAB variable but not in a JVM heap, you
need to find h such that h < n.

To use automated batching to fetch where h rows fit in the JVM heap:

setdbprefs('FetchInBatches','yes')
setdbprefs('FetchBatchSize','<h>')

If using exec, fetch, and the connection object conn:

curs = exec(conn,'Select .');
curs = fetch(curs);

If using runsqlscript to run a query from an SQL file:

results = runsqlscript(conn,'<filename>.sql')

Note that when you use automated batching and do not supply the rowLimit
parameter to fetch or the rowInc parameter to runsqlscript, a count query

3-13

3 Using Visual Query Builder

is executed internally to get the total number of rows to be imported. This is
done to preallocate the output variable for better performance. In most cases,
the count query overhead is not much, but you can easily avoid it if you know
or have a good idea of the value of n:

curs = fetch(curs,<n>)

or

results = runsqlscript(conn,'<filename>.sql','rowInc','<n>')

Method 3 — Data Fits in MATLAB Variable and JVM Heap
If your data (n) fits in a MATLAB variable and also in a JVM heap, then you
need not use batching at all.

setdbprefs('FetchInBatches','no')

If using fetch:

curs = fetch(curs);

If using runsqlscript to run a query from an SQL file:

results = runsqlscript(conn,'<filename>.sql')

3-14

Displaying Query Results

Displaying Query Results

In this section...

“How to Display Query Results” on page 3-15

“Displaying Data Relationally” on page 3-15

“Charting Query Results” on page 3-19

“Displaying Query Results in an HTML Report” on page 3-21

“Displaying Query Results with MATLAB® Report Generator™” on page
3-22

How to Display Query Results
To display query results, perform one of the following actions:

• Enter the variable name to which to assign the query results in the
MATLAB Command Window.

• Double-click the variable in the VQB Data area to view the data in the
Variables editor.

The examples in this section use the saved query basic.qry. To load and
configure this query:

1 Select Query > Preferences, and set Read NULL numbers as to 0.

2 Select Query > Load.

3 In the Load SQL Statement dialog box, select basic.qry from the File
name field and click Open.

4 In VQB, enter a value for the MATLAB workspace variable, for
example, A, and click Execute.

Displaying Data Relationally
To display the results of basic.qry:

1 Execute basic.qry.

3-15

3 Using Visual Query Builder

2 Select Display > Data.

The query results appear in a figure window.

This display shows only unique values for each field, so you should not
read each row as a single record. In this example, there are 10 entries for
StockNumber, eight entries for January and February, and 10 entries
for March. The number of entries in each field corresponds to the number
of unique values in the field.

3 Click a value in the figure window, for example, StockNumber 400876,
to see its associated values.

3-16

Displaying Query Results

The data associated with the selected value appears in bold font and is
connected with a dotted line. The data shows that sales for item 400876 are
3000 in January, 2400 in February, and 1500 in March.

4 As another example, click 3000 under January. It shows three different
items with sales of 3000 units in January: 400314, 400876, and 400999.

3-17

3 Using Visual Query Builder

3-18

Displaying Query Results

Charting Query Results
To chart the results of basic.qry:

1 Select Display > Chart.

The Visual Query Builder Charting dialog box appears.

2 Select a type of chart from the Charts list. In this example, choose a pie
chart by specifying pie.

A preview of the pie chart, with each stock item displayed in a different
color, appears at the bottom of the dialog box.

3-19

3 Using Visual Query Builder

3 Select the data to display in the chart from the X data, Y data, and Z
data list boxes. In this example, select March from the X data list box to
display a pie chart of March data.

The pie chart preview now shows percentages for March data.

4 To display a legend, which maps colors to the stock numbers, select the
Show legend check box.

The Legend labels field becomes active.

5 Select StockNumber from the Legend labels list box.

A legend appears in the chart preview. Drag and move the legend in the
preview as needed.

3-20

Displaying Query Results

6 Click Close to close the Charting dialog box.

Displaying Query Results in an HTML Report
To display results for basic.qry in an HTML report, selectDisplay > Report.

The query results appear as a table in a Web browser. Each row represents a
record from the database. In this example, sales for item 400876 are 3000 in
January, 2400 in February, and 1500 in March.

Tip Because some browsers do not start automatically, you may need to open
your Web browser before displaying the query results.

3-21

3 Using Visual Query Builder

Displaying Query Results with MATLAB Report
Generator
To use the MATLAB Report Generator™ software to customize the display
of the results of basic.qry:

1 Select Display > Report Generator.

2 The Report Explorer opens, listing sample report templates
that you can use to create custom reports. Select the template
matlabroot/toolbox/database/vqb/databasetlbx.rpt from the Options
pane in the middle of the Report Explorer window.

3-22

Displaying Query Results

3 Open the report template for editing by clicking Open a Report file or
stylesheet.

a In the Outline pane on the left, under Report Generator >
databasetlbx.rpt, select Table.

b In the Properties pane on the right, do the following:

3-23

3 Using Visual Query Builder

i In Table Content > Workspace Variable Name, enter the name
of the variable to which you assigned the query results in VQB, for
example, 'A'.

ii Under Header/Footer Options, set Number of header rows to 0.

c Click Apply.

4 Select File > Report to run the report.

The report appears in a Web browser.

5 Field names do not automatically display as column headers in the report.
To display the field names:

a Modify the workspace variable A as follows:

3-24

Displaying Query Results

A = [{'Stock Number', 'January', 'February', 'March'};A]

b In the MATLAB Report Generator Properties pane, change Number of
header rows to 1 and regenerate the report. The report now displays
field names as headings.

Each row represents a record from the database. For example, sales for
item 400876 are 3000 in January, 2400 in February, and 1500 in March.

For more information about the MATLAB Report Generator product, click the
Help button in the Report Explorer.

3-25

3 Using Visual Query Builder

Tip Because some browsers are not configured to launch automatically, you
may need to open your Web browser before displaying the report.

3-26

Fine-Tuning Queries Using Advanced Query Options

Fine-Tuning Queries Using Advanced Query Options

In this section...

“Retrieving All Occurrences vs. Unique Occurrences of Data” on page 3-27

“Retrieving Data That Meets Specified Criteria” on page 3-29

“Grouping Statements” on page 3-32

“Displaying Results in a Specified Order” on page 3-36

“Using Having Clauses to Refine Group by Results” on page 3-39

“Creating Subqueries for Values from Multiple Tables” on page 3-42

“Creating Queries That Include Results from Multiple Tables” on page 3-47

“Additional Advanced Query Options” on page 3-50

Note For more information about advanced query options, select Help in
any of the dialog boxes for the options.

Retrieving All Occurrences vs. Unique Occurrences
of Data
To use the dbtoolboxdemo data source to demonstrate how to retrieve all
versus distinct occurrences of data:

1 Set the Data return format preference to cellarray.

2 Set Read NULL numbers as to NaN.

3 In Data operation, choose Select.

4 In Data source, select dbtoolboxdemo.

Do not specify Catalog or Schema.

5 In Tables, select SalesVolume.

6 In Fields, select January.

3-27

3 Using Visual Query Builder

7 To retrieve all occurrences of January:

a In Advanced query options, select All.

b Assign the query results to theMATLAB workspace variable All.

c Click Execute to run the query.

8 To retrieve only unique occurrences of data:

a In Advanced query options, select Distinct.

b Assign the query results to aMATLAB workspace variable Distinct.

c Click Execute to run the query.

9 In the MATLAB Command Window, enter All, Distinct to display the
query results:

3-28

Fine-Tuning Queries Using Advanced Query Options

The value 3000 appears three times in All, but appears only once in
Distinct.

Retrieving Data That Meets Specified Criteria
Use basic.qry and theWhere field in Advanced query options to retrieve
stock numbers greater than 400000 and less than 500000:

1 Load basic.qry.

2 Set the Data return format preference to cellarray.

3 Set Read NULL numbers as to NaN.

4 In Advanced query options, click Where.

The WHERE Clauses dialog box appears.

5 In Fields, select the field whose values you want to restrict, StockNumber.

6 In Condition, specify that StockNumber must be greater than 400000.

a Select Relation.

b In the drop-down list to the right of Relation, select >.

c In the field to the right of the drop-down list, enter 400000.

The WHERE Clauses dialog box now looks as follows.

3-29

3 Using Visual Query Builder

d Click Apply.

The clause that you defined, StockNumber > 400000, appears in the
Current clauses area.

3-30

Fine-Tuning Queries Using Advanced Query Options

7 Add the condition that StockNumber must also be less than 500000.

a In Current clauses, select StockNumber > 400000.

b In Current clauses, click Edit or double-click the StockNumber entry.

c For Operator, select AND.

d Click Apply.

The Current clauses field now displays:

StockNumber > 400000 AND

e In Fields, select StockNumber.

f In Condition, select Relation.

g In the drop-down list to the right of Relation, select <.

h In the field to the right of the drop-down list, enter 500000.

i Click Apply.

The Current clauses field now displays:

StockNumber > 400000 AND
StockNumber < 500000

8 Click OK.

The WHERE Clauses dialog box closes. The Where field and SQL
statement display the Where Clause you specified.

9 Assign the query results to the MATLAB workspace variable A.

10 Click Execute.

3-31

3 Using Visual Query Builder

11 To view the results, enter A in the Command Window:

12 Save this query as basic_where.qry.

Grouping Statements
Use the WHERE Clauses dialog box to group query statements. In this
example, modify basic_where.qry to retrieve data where sales in January,
February, or March exceed 1500 units, if sales in each month exceed 1000
units.

To modify basic_where.qry:

1 Click Where in VQB. The WHERE Clauses dialog box appears.

2 Modify the query to retrieve data if sales in January, February, or March
exceed 1500 units.

3-32

Fine-Tuning Queries Using Advanced Query Options

a In Current clauses, select StockNumber < 500000 and click Edit.

b For Operator, select OR and click Apply.

c In Fields, select January. For Relation, select > and enter 1500 in its
field. For Operator, select OR. Click Apply.

d Repeat step c twice, specifying February and March in Fields.

The WHERE Clauses dialog box now looks as follows.

3 Group the criteria that require sales in each month to exceed 1500 units.

a In Current clauses, select the statement January > 1500 OR. Press
Shift+click to select February > 1500 OR and March > 1500 also.

b Click Group.

An opening parenthesis is added before January and a closing
parenthesis is added after March > 1500, indicating that these
statements are evaluated as a group.

3-33

3 Using Visual Query Builder

4 Modify the query to retrieve data if sales in each month exceed 1000 units.

a Select March > 1500) in Current clauses and click Edit.

b Select AND for Operator and click Apply.

c Select January in Fields. Select > for Relation and enter 1000 in its
field. Select AND for Operator. Click Apply.

d Repeat step c twice, specifying February and March in Fields.

The WHERE Clauses dialog box now looks as follows.

3-34

Fine-Tuning Queries Using Advanced Query Options

e Click OK.

The WHERE Clauses dialog box closes. The SQL statement dialog box
displays the modified where clause.

5 Assign the query results to theMATLAB workspace variable AA.

6 Click Execute to run the query.

3-35

3 Using Visual Query Builder

7 To view the results, enter AA in the MATLAB Command Window.

Removing Grouping of Statements
To use the WHERE Clauses dialog box to remove grouping criteria from the
previous example:

1 In Current clauses, select (January > 1000 AND.

2 Press Shift+click to select February > 1000 AND and March > 1000) also.

3 Click Ungroup.

The parentheses are removed from the statements, indicating that their
grouping is removed.

Displaying Results in a Specified Order
Use Order by in Advanced query options to specify the order in which
query results display.

This example uses the basic_where.qry query you created in “Retrieving
Data That Meets Specified Criteria” on page 3-29. The results of
basic_where.qry are sorted so that January is the primary sort field,
February the secondary, and March the last. Results for January and
February appear in ascending order, and results for March appear in
descending order.

To specify the order in which results appear in basic_where.qry:

3-36

Fine-Tuning Queries Using Advanced Query Options

1 Load basic_where.qry.

2 Set the Data return format preference to cellarray.

3 Set Read NULL numbers to NaN.

4 In Advanced query options, select Order by.

The ORDER BY Clauses dialog box appears.

5 Enter values for the Sort key number and Sort order fields for the
appropriate Fields.

To specify January as the primary sort field and display results in
ascending order:

a In Fields, select January.

b For Sort key number, enter 1.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now displays:

January ASC

3-37

3 Using Visual Query Builder

6 To specify February as the second sort field and display results in
ascending order:

a In Fields, select February.

b For Sort key number, enter 2.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now displays:

January ASC
February ASC

7 To specify March as the third sort field and display results in descending
order:

a In Fields, select March.

b For Sort key number, enter 3.

c For Sort order, select Descending.

d Click Apply.

The Current clauses area now displays:

January ASC
February ASC
March DESC

8 Click OK.

The ORDER BY Clauses dialog box closes. The Order by field and the
SQL statement in VQB display the specified Order By clause.

9 Assign the query results to the MATLAB workspace variable B.

10 Click Execute to run the query.

3-38

Fine-Tuning Queries Using Advanced Query Options

11 To view the results, enter B in the MATLAB Command Window. Enter A to
display the unordered query results and compare them to B. Your results
look as follows:

For B, results are first sorted by January sales, in ascending order. The
lowest value for January sales, 1200 (for item number 400455), appears
first. The highest value, 5000 (for item number for 400345), appears last.

For items 400999, 400314, and 400876, January sales were 3000.
Therefore, the second sort key, February sales, applies. February sales
appear in ascending order: 1500, 2400, and 2400 respectively.

For items 400314 and 400876, February sales were 2400, so the third
sort key, March sales, applies. March sales appear in descending order:
1800 and 1500, respectively.

Using Having Clauses to Refine Group by Results

Using the HAVING Clauses Dialog Box
Use the Having function to refine the results of a Group By clause.

3-39

3 Using Visual Query Builder

After specifying a group-by clause in Advanced query options, click
Having. The HAVING Clauses dialog box appears.

1 From the Fields list box, select the entry whose value to restrict.

2 Define the Condition for the selected field, as described in “Retrieving
Data That Meets Specified Criteria” on page 3-29.

3 Select Operator to add another condition.

4 Click Apply to create the clause.

The subquery appears in the Current clauses area.

5 Repeat steps 1 through 4 to add more conditions as needed.

6 Change the clauses as needed:

• To edit a clause:

a Select the clause from Current clauses and click Edit.

b Modify the Fields, Condition, and Operator fields as needed.

c Click Apply.

• To group clauses:

3-40

Fine-Tuning Queries Using Advanced Query Options

d Select the clauses to group from Current clauses. Press Ctrl+click
or Shift+click to select multiple clauses.

e Click Group. Parentheses are added around the set of clauses.

To ungroup clauses, select the clauses and then click Ungroup.

• To delete a clause, Select the clause from Current clauses and click
Delete. Use Ctrl+click or Shift+click to select multiple clauses.

7 Specify a subquery in the HAVING Clauses dialog box, as needed. For
more information, see “Creating Subqueries for Values from Multiple
Tables” on page 3-42.

8 Click OK.

The HAVING Clauses dialog box closes. The SQL statement in the Visual
Query Builder dialog box updates to reflect the specified having clause.

Example: Using Having Clauses
This example restricts the results from basic_where.qry to sales greater
than 2000 for January and February:

1 In Advanced query options, click Having. The HAVING Clauses dialog
box appears.

2 For January:

a Select > as the Relation Condition.

b Enter 2000 as the Relation value.

c Select the AND Operator.

d Click Apply.

3 For February:

a Select > as the Relation Condition.

b Enter 2000 as the Relation value.

c Click Apply. The HAVING Clauses dialog box appears as follows.

3-41

3 Using Visual Query Builder

4 Click OK.

The HAVING Clauses dialog box closes. The SQL statement field in the
VQB dialog box reflects the specified Having clause.

5 Assign a MATLAB workspace variable C, and click Execute to run the
query.

C =
[3000] [2400]
[5000] [3500]

Compare these results to those in “Displaying Results in a Specified Order”
on page 3-36.

Creating Subqueries for Values from Multiple Tables
Use the Where feature in Advanced query options to create subqueries.
Creating subqueries in this way is referred to as nested SQL.

This example uses basic.qry, which you created in “Saving Queries”.

The salesVolume table has sales volumes and stock number fields, but no
product description field. The productTable has product description and
stock number fields, but no sales volumes. This example retrieves the stock
number for the product whose description is Building Blocks from the

3-42

Fine-Tuning Queries Using Advanced Query Options

productTable table. It then gets the sales volume values for that stock
number from the salesVolume table.

1 Load basic.qry.

2 Set the Data return format Preference to cellarray and Read NULL
numbers as to NaN.

3 Click Where in Advanced query options.

The WHERE Clauses dialog box appears.

4 Click Subquery.

The Subquery dialog box appears.

3-43

3 Using Visual Query Builder

5 In Tables, select productTable, which includes the association between
the stock number and the product description. The fields in that table
appear.

6 In Fields, select stockNumber, the field that is common to this table and
the table from which you are retrieving results.

The statement SELECT stockNumber FROM productTable is created in the
SQL subquery statement.

7 Limit the query to product descriptions that are Building Blocks.

a In Fields in Subquery WHERE clauses, select productDescription.

b For Condition, select Relation.

c In the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, enter 'Building Blocks'.

e Click Apply.

The clause appears in the Current subquery WHERE clauses field
and is added to the SQL subquery statement.

3-44

Fine-Tuning Queries Using Advanced Query Options

8 Click OK to close the Subquery dialog box.

9 In the WHERE Clauses dialog box, click Apply.

This updates the Current clauses area using the subquery criteria
specified in steps 3 through 8.

3-45

3 Using Visual Query Builder

10 In the WHERE Clauses dialog box, click OK.

The WHERE Clauses dialog box closes. The SQL statement in the VQB
dialog box updates.

11 Assign the query results to the MATLAB workspace variable C.

12 Click Execute.

13 Type C at the prompt in the MATLAB Command Window to see the results.

14 The results are for item 400345, which has the product description
Building Blocks, although that is not evident from the results. Create
and run a query to verify that the product description is Building Blocks:

a For Data source, select dbtoolboxdemo.

b In Tables, select productTable.

c In Fields, select stockNumber and productDescription.

d Assign the query results to theMATLAB workspace variable P.

e Click Execute.

3-46

Fine-Tuning Queries Using Advanced Query Options

f Type P at the prompt in the MATLAB Command Window to view the
results.

The results show that item 400345 has the product description Building
Blocks. In the next section, you create a query that includes product
description in the results.

Note You can include only one subquery in a query using VQB; you can
include multiple subqueries using Database Toolbox functions.

Creating Queries That Include Results from Multiple
Tables
A query whose results include values from multiple tables is said to perform a
join operation in SQL.

This example retrieves sales volumes by product description. It is like the
one in “Creating Subqueries for Values from Multiple Tables” on page 3-42,
but this example creates a query that returns product description rather
than stock number.

The salesVolume table has sales volume and stock number fields, but
no product description field. The productTable table has product
description and stock number fields, but no sales volume field. To create
a query that retrieves data from both tables and equates the stock number
from productTable with the stock number from salesVolume:

3-47

3 Using Visual Query Builder

1 Set the Data return format preference to cellarray and the Read
NULL numbers as preference to NaN.

2 For Data operation, click Select.

3 For Data source, select dbtoolboxdemo.

The Catalog, Schema, and Tables for dbtoolboxdemo appear.

Do not specify Catalog or Schema.

4 In Tables, select the tables from which you want to retrieve data. For this
example, press Ctrl+click and select both productTable and salesVolume.

The fields (columns) in those tables appear in Fields. Field
names appear in the format tableName.fieldName. Therefore,
productTable.stockNumber indicates the stock number in the product
table and salesVolume.StockNumber indicates the stock number in the
sales volume table.

5 In Fields, press Ctrl+click to select the following fields:

• productTable.productDescription

• salesVolume.January

• salesVolume.February

• salesVolume.March

6 In this example, the Where clause equates the productTable.stockNumber
with the salesVolume.StockNumber, so that product description is
associated with sales volumes in the query results.

In Advanced query options, click Where to associate fields from
different tables. The WHERE Clauses dialog box appears.

7 In the WHERE clauses dialog box:

a In Fields, select productTable.stockNumber.

b For Condition, select Relation.

c In the drop-down list to the right of Relation, select =.

3-48

Fine-Tuning Queries Using Advanced Query Options

d In the field to the right of the drop-down list, enter
salesVolume.StockNumber.

e Click Apply.

The clause appears in the Current clauses field.

f Click OK to close the WHERE Clauses dialog box. The Where field and
SQL statement in VQB display the Where clause.

8 Assign the query results to theMATLAB workspace variable P1.

9 Click Execute to run the query.

10 Type P1 in the MATLAB Command Window.

P1 =

'Victorian Doll' [1400] [1100] [981]
'Train Set' [2400] [1721] [1414]
'Engine Kit' [1800] [1200] [890]
'Painting Set' [3000] [2400] [1800]
'Space Cruiser' [4300] [NaN] [2600]
'Building Blocks' [5000] [3500] [2800]
'Tin Soldier' [1200] [900] [800]
'Sail Boat' [3000] [2400] [1500]
'Slinky' [3000] [1500] [1000]
'Teddy Bear' [NaN] [900] [821]

3-49

3 Using Visual Query Builder

Additional Advanced Query Options
For more information on advanced query options, choose an option and click
Help in its dialog box. For example, click Group by in Advanced query
options, and then click Help in the Group by Clauses dialog box.

3-50

Retrieving BINARY and OTHER Data Types

Retrieving BINARY and OTHER Data Types
This example shows how to retrieve data of types BINARY and OTHER, which
may require manipulation before it can undergo MATLAB processing. To
retrieve images using the dbtoolboxdemo data source and a sample file that
parses image data, matlabroot/toolbox/database/vqb/parsebinary.m:

1 For Data Operation, select Select.

2 In Data source, select dbtoolboxdemo.

3 In Tables, select Invoive.

4 In Fields, select InvoiceNumber and Receipt (which contains bitmap
images).

5 Select Query > Preferences.

6 In the Data return format field, specify cellarray.

7 As the MATLAB workspace variable, specify A.

8 Click Execute to run the query.

3-51

3 Using Visual Query Builder

9 Type A in the MATLAB Command Window to view the query results.

A =

[1] [21626x1 int8]
[2] [21626x1 int8]
[3] [21722x1 int8]
[4] [21626x1 int8]
[5] [21626x1 int8]
[6] [21626x1 int8]
[7] [21626x1 int8]
[8] [21626x1 int8]
[9] [21626x1 int8]

10 Assign the first element in A to the variable photo.

photo = A{1,2};

11 Make sure your current folder is writable.

12 Run the sample program parsebinary, which writes the retrieved data to
a file, strips ODBC header information, and displays photo as a bitmap
image.

cd I:\MATLABFiles\myfiles
parsebinary(photo, 'BMP');

3-52

Retrieving BINARY and OTHER Data Types

For more information on parsebinary, enter help parsebinary, or view
the parsebinary file in the MATLAB Editor/Debugger by entering open
parsebinary in the Command Window.

3-53

3 Using Visual Query Builder

Importing and Exporting BOOLEAN Data

In this section...

“Importing BOOLEAN Data from Databases” on page 3-54

“Exporting BOOLEAN Data to Databases” on page 3-57

Importing BOOLEAN Data from Databases
BOOLEAN data is imported from databases into the MATLAB workspace as
data type logical. This data has a value of 0 (false) or 1 (true), and is stored
in a cell array or structure.

This example imports data from the Invoice table in the dbtoolboxdemo
database into the MATLAB workspace.

1 Set Data return format to cellarray.

2 For Data operation, choose Select.

3 In Data source, select dbtoolboxdemo.

4 In Tables, select Invoice.

5 In Fields, select Paid and InvoiceNumber.

6 Assign the query results to the MATLAB workspace variable D.

7 Click Execute to run the query.

VQB retrieves a 10-by-2 array.

8 Enter D in the MATLAB Command Window. 10 records are returned:

D =

[2101] [0]
[3546] [1]
[33116] [1]
[34155] [0]
[34267] [1]

3-54

Importing and Exporting BOOLEAN Data

[37197] [1]
[37281] [0]
[41011] [1]
[61178] [0]
[62145] [1]

9 Compare these results to the data in Microsoft Access.

3-55

3 Using Visual Query Builder

10 In the VQB Data area, double-click D to view its contents in the Variables
editor.

3-56

Importing and Exporting BOOLEAN Data

Exporting BOOLEAN Data to Databases
Logical data is exported from the MATLAB workspace to a database as type
BOOLEAN. This example adds two rows of data to the Invoice table in the
dbtoolboxdemo database.

1 In the MATLAB workspace, create I, the structure you want to export.

I.InvoiceNumber{1,1}=456789;
I.Paid{1,1}=logical(0);
I.InvoiceNumber{2,1}=987654;
I.Paid{2,1}=logical(1);

2 For Data operation, choose Insert.

3 In Data source, select dbtoolboxdemo.

4 In Tables, select Invoice.

5 In Fields, select Paid and InvoiceNumber.

6 Assign results to the MATLAB workspace variable I.

7 Click Execute to run the query.

VQB inserts two new rows into the Invoice table.

View the table in Microsoft Access to verify that the data was correctly
inserted.

3-57

3 Using Visual Query Builder

3-58

Saving Queries in Files

Saving Queries in Files

In this section...

“About Generated Files” on page 3-59

“VQB Query Elements in Generated Files” on page 3-60

About Generated Files
Select Query > Generate MATLAB File to create a file that contains the
equivalent Database Toolbox functions required to run an existing query
that was created in VQB. Edit the file to include MATLAB or related toolbox
functions, as needed. To run the query, execute the file.

The following is an example of a file generated by VQB:

% Set preferences with setdbprefs.

s.DataReturnFormat = 'cellarray';

s.ErrorHandling = 'store';

s.NullNumberRead = 'NaN';

s.NullNumberWrite = 'NaN';

s.NullStringRead = 'null';

s.NullStringWrite = 'null';

s.JDBCDataSourceFile = '';

s.UseRegistryForSources = 'yes';

s.TempDirForRegistryOutput = '';

s.FetchInBatches = 'yes';

s.FetchBatchSize = '10000'

setdbprefs(s)

% Make connection to database. Note that the password has been omitted.

% Using ODBC driver.

conn = database('dbtoolboxdemo','','password');

% Read data from database.

e = exec(conn,'SELECT ALL StockNumber,January,February FROM salesVolume');

e = fetch(e);

close(e)

3-59

3 Using Visual Query Builder

Close database connection.

close(conn)

VQB Query Elements in Generated Files
The following VQB query elements do not appear in generated files:

• Generated code files do not include MATLAB workspace variables to which
you assigned query results in the VQB query. The file assigns the query
results to e; access these results using the variable e.Data. For example,
you can add a statement to the file that assigns a variable name to e.Data
as follows:

myVar = e.Data

• For security reasons, generated files do not include passwords required
to connect to databases. Instead, the database statement includes the
string 'password' as a placeholder. To run files to connect to databases
that require passwords, substitute your password for the string password
in the database statement.

3-60

Using Database Explorer

Using Database Explorer

In this section...

“About Database Explorer” on page 3-61

“Workflow” on page 3-62

“Configure Your Environment” on page 3-62

“Database Connection Error Messages” on page 3-74

“Set Database Preferences” on page 3-76

“Display Data from a Single Database Table” on page 3-78

“Join Data from Multiple Database Tables” on page 3-80

“Define Query Criteria to Refine Results” on page 3-85

“Query Rules Using the SQL Criteria Panel” on page 3-87

“Query Example Using a Left Outer Join” on page 3-89

“Work with Multiple Databases” on page 3-98

“Import Data to the MATLAB Workspace” on page 3-98

“Save Queries as SQL Code” on page 3-101

“Generate MATLAB Code” on page 3-102

About Database Explorer
dexplore starts Database Explorer, which is a Database Toolbox app for
connecting to a database and importing data to the MATLAB workspace.

Database Explorer is an interactive app that lets you:

• Create and configure JDBC and ODBC data sources.

• Establish multiple connections to databases.

• Select tables and columns of interest.

• Fine-tune selection using SQL query criteria.

• Preview selected data.

3-61

3 Using Visual Query Builder

• Import selected data into the MATLAB workspace.

• Save generated SQL queries.

• Generate MATLAB code.

Workflow
The workflow for using Database Explorer is:

1 Set up an ODBC or JDBC connection to your database.

2 Connect to the database.

3 Select tables and columns of interest.

4 Use query criteria to fine-tune display results.

5 Select data and import it into the MATLAB workspace.

6 Use the Database Explorer tabbed interface to open multiple databases.

7 Save queries as an SQL script to run later.

8 Generate MATLAB code.

Configure Your Environment
Before using Database Explorer to connect to a database, you must set up a
data source. A data source consists of:

• Data that the toolbox accesses

• Information required to find the data, such as driver, folder, server, or
network names

Data sources interact with ODBC drivers or JDBC drivers. An ODBC driver is
a standard Microsoft Windows interface that enables communication between
database management systems and SQL-based applications. A JDBC driver
is a standard interface that enables communication between applications
based on Oracle Java and database management systems.

3-62

Using Database Explorer

Database Toolbox software is based on Java. It uses a JDBC/ODBC bridge to
connect to the ODBC driver of a database, which is automatically installed as
part of the MATLAB JVM.

This figure illustrates how drivers interact with Database Toolbox software.

6��	���

������"�

5478
��	
6��	���

������"�

9#*:;<#*:
*��	.�

#�������
(�����3

#�������
(�����3

9#*:
#����� #�������

<#*:
#����� #�������

Tip Some Windows systems support both ODBC and JDBC drivers. On such
systems, JDBC drivers generally provide better performance than ODBC
drivers because the ODBC/JDBC bridge is not used to access databases.

Before You Begin
Before you can use Database Explorer with the examples in this
documentation, do the following:

1 Set up the data sources that are provided with Database Toolbox.

Caution If you have previously used Visual Query Builder
(querybuilder) to access a JDBC data source, before starting Database
Explorer for the first time, you must execute the following command:

setdbprefs('JDBCDataSourceFile', '')

2 Configure the data sources for use with your database driver.

• If you are using an ODBC driver, see “Configure ODBC Data Sources”
on page 3-64.

3-63

3 Using Visual Query Builder

• If you are using a JDBC driver, see “Configure JDBC Data Sources”
on page 3-69.

Set Up the dbtoolboxdemo Data Source
The dbtoolboxdemo data source uses the tutorial database located in
matlabroot/toolbox/database/dbdemos/tutorial.mdb.

To set up this data source:

1 Copy tutorial.mdb into a folder to which you have write access.

2 Confirm you have write access to tutorial.mdb.

3 Open tutorial.mdb from the MATLAB Current Folder by right-clicking
the file and selecting Open Outside MATLAB. The file opens in Microsoft
Access.

Note You might need to convert the database to the version of Access you
are currently running. For example, beginning in Microsoft Access 2007,
you see the option to save as *.accdb. For more information, consult your
database administrator.

Configure ODBC Data Sources
When setting up a data source for use with an ODBC driver, the target
database can be located on a PC running the Windows operating system or
on another system to which the PC is networked. These instructions use
the Microsoft ODBC Data Source Administrator Version 6.1 for the U.S.
English version of Microsoft Access 2010 for Windows systems. If you have
a different configuration, you might need to modify these instructions. For
more information, consult your database administrator.

1 Close open databases, including tutorial.mdb in the database program.

2 Start Database Explorer by clicking the Apps tab on the MATLAB
Toolstrip and then selecting Database Explorer from the Database
Connectivity and Reporting section in the apps gallery. Alternatively,
at the command line, enter:

3-64

Using Database Explorer

dexplore

If no data sources are set up, a message box opens. Click OK to dismiss
the message. Otherwise, you are prompted to Connect to a data source.
Click Cancel to dismiss this prompt.

3 Click the Database Explorer tab and then select New > ODBC to open
the ODBC Data Source Administrator dialog box to define the ODBC data
source.

Requirement When using a 32-bit version of Microsoft Office, you must
also use a 32-bit version of MATLAB to complete the remaining steps.

4 Click the User DSN tab.

5 Click Add.

3-65

3 Using Visual Query Builder

A list of installed ODBC drivers appears in the Create New Data Source
dialog box.

6 Select Microsoft Access Driver (*.mdb, *.accdb) and click Finish.

The ODBC Microsoft Access Setup dialog box for your driver opens. The
dialog box for your driver might differ from the following.

3-66

Using Database Explorer

7 Enter dbtoolboxdemo as the data source name.

8 Enter tutorial database as the description.

9 Select the database for this data source to use. For some drivers, you can
skip this step. If you are unsure about skipping this step, consult your
database administrator.

a In the ODBC Microsoft Access Setup dialog box, click Select.

3-67

3 Using Visual Query Builder

b Specify the database you want to use. For the dbtoolboxdemo data
source, select tutorial.mdb.

c If your database is on a system to which your PC is connected:

i Click Network. The Map Network Drive dialog box opens.

ii Specify the folder containing the database you want to use.

iii Click Finish.

d Click OK to close the Select Database dialog box.

10 In the ODBC Microsoft Access Setup dialog box, click OK.

11 Repeat steps 7 through 10 with the following changes to define the data
source for any additional databases that you want to use.

The ODBC Data Source Administrator dialog box displays the
dbtoolboxdemo and any additional data sources that you have added in
the User DSN tab.

3-68

Using Database Explorer

12 Click OK to close the dialog box.

Configure JDBC Data Sources

1 Find the name of the JDBC driver file. This file is provided by your
database vendor. The name and location of this file differ for each system.
If you do not know the name or location of this file, consult your database
administrator.

Caution If you have previously used Visual Query Builder
(querybuilder) to access a JDBC data source, before starting Database
Explorer for the first time, you must execute the following command:

setdbprefs('JDBCDataSourceFile', '')

Then follow these instructions to set up the JDBC data source using
Database Explorer.

3-69

3 Using Visual Query Builder

2 Specify the location of the JDBC drivers file in the MATLAB Java class path
by adding this file’s path to javaclasspath.txt file. MATLAB loads the
static class path at the start of each session. The static path offers better
class loading performance than the dynamic path. To add folders to the
static path, create the file javaclasspath.txt, and then restart MATLAB.

Create an ASCII file in your preferences folder named javaclasspath.txt.
To view the location of the preferences folder, type:

prefdir

Each line in the file is the path name of a folder or jar file. For example:

d:\work\javaclasses

To simplify the specification of folders in cross-platform environments, use
any of these macros: $matlabroot, $arch, and $jre_home. You can also
create a javaclasspath.txt file in your MATLAB startup folder. Classes
specified in this file override classes specified in the javaclasspath.txt
file in the preferences folder.

Note MATLAB reads the static class path only at startup. If you edit
javaclasspath.txt or change your .class files while MATLAB is
running, you must restart MATLAB to put those changes into effect.

If the drivers file is not located where javaclasspath.txt indicates,
errors do not appear, and Database Explorer does not establish a database
connection.

For more information, see “Bringing Java Classes into MATLAB
Workspace”.

3 Close the open database, tutorial.mdb, in the database program.

4 Start Database Explorer by clicking the Apps tab on the MATLAB
Toolstrip and then selecting Database Explorer from the Database
Connectivity and Reporting section in the apps gallery. Alternatively,
at the command line, enter:

dexplore

3-70

Using Database Explorer

5 Click the Database Explorer tab and then select New > JDBC to open
the Create a New JDBC data source dialog box.

6 Use the following table to set up JDBC drivers for use with Database
Explorer.

a Using the Create a New JDBC data source dialog box, this table describes
the fields that you use to define your JDBC data source. For examples
of syntax used in these fields, see “JDBC Driver Name and Database
Connection URL” on page 5-36 on the database function reference page.

3-71

3 Using Visual Query Builder

Field Description

Data Source
Name

The name you assign to the data source. For some
databases, the Name must match the name of the
database as recognized by the machine it runs on.

Vendor The vendor’s name for the data source. When using
Other:

• Driver — The JDBC driver name (sometimes
referred to as the class that implements the Java
SQL driver for your database).

• URL — The JDBC URL object, of the form
jdbc:subprotocol:subname. subprotocol is
a database type. subname can contain other
information used by Driver, such as the location of
the database and/or a port number. It can take the
form //hostname:port/databasename.

Note When using Other as the Vendor, your driver
manufacturer’s documentation specifies the Driver
and URL formats. You might need to consult your
database system administrator for this information.

Server
Name

Server name.

Port
Number

Server port number.

Authentication
Type

(Microsoft SQL Server only) Server or Windows
authentication.

Driver Type (Oracle only) Driver type is thin or oci.

Username User name to access the database.

Password Password.

Database Database name.

3-72

Using Database Explorer

b In the Create a New JDBC data source dialog box, click Save.

c If this is the first time you are creating a data source using Database
Explorer, the New file to store JDBC connection parameters dialog box
opens. Use this dialog box to create a MAT-file that saves your specified
data source information for future Database Explorer sessions.

Navigate to the folder where you want to put the MAT-file, specify a
name for it that includes a .mat extension, and click Save.

d Test the connection by clicking Test.

If your database requires a user name and password, a dialog box
prompting you to supply them opens. Enter values into these fields and
click OK.

A confirmation dialog box states that the database connection succeeded.

e To add more data sources, repeat steps 5 and 6 for each new data source.

Note You can use tabs in Database Explorer to access different data
sources. All of the data sources created using Database Explorer are
stored in a single MAT-file for easy access. This MAT-file name is stored
in setdbprefs('JDBCDataSourceFile') and is valid for all MATLAB
sessions.

Connect to Data Source
After configuring your OBDC or JBDC data sources, use Database Explorer
to connect to the database.

1 Start Database Explorer by clicking the Apps tab on the MATLAB
Toolstrip and then selecting Database Explorer from the Database
Connectivity and Reporting section in the apps gallery. Alternatively,
at the command line, enter:

dexplore

2 Select your data source from the Connect to a Data Source dialog box or
click Cancel and then click the Database Explorer tab and then click
Connect to select your data source.

3-73

3 Using Visual Query Builder

3 Select your data source from the Data Sources list and enter your user
name and password.

Database Connection Error Messages

Connection Error Messages and Probable Causes

Vendor Error Message Probable Causes

All Unable to find JDBC driver. • Path to the JDBC driver jar file is
not on the static or dynamic class
path.

• Incorrect driver name provided
while using the 'driver' and
'url' syntax.

All [Microsoft][ODBC Driver Manager]
The specified DSN contains an
architecture mismatch between Driver
and Application

You tried to open a 32-bit application
when running MATLAB in 64-bit
mode. Restart MATLAB to run in
32-bit mode using the command
matlab win32.

3-74

Using Database Explorer

Connection Error Messages and Probable Causes (Continued)

Vendor Error Message Probable Causes

Microsoft SQL
Server

The TCP/IP connection to the host
hostname, port portnumber has failed.
Error: “null. Verify the connection
properties, check that an instance of
SQL Server is running on the host and
accepting TCP/IP connections at the
port, and that no firewall is blocking
TCP connections to the port.”

Incorrect server name or port
number. Microsoft SQL Server
uses a dynamic port for JDBC and
the value should be verified using
Microsoft SQL Server Configuration
Manager.

Microsoft SQL
Server

This driver is not configured for
integrated authentication.

The Microsoft SQL Server Windows
authentication library is not added
to librarypath.txt. For more
information, see the database
example for Microsoft SQL Server
Authenticated Database Connection.

Microsoft SQL
Server

Invalid string or buffer length. 64-bit ODBC driver error. Use a
JDBC driver or the native ODBC
interface instead.

MySQL Access denied for user
'user'@'machinename' (using
password: YES)

Incorrect user name and password
combination.

MySQL Communications link failure.
The last packet sent successfully to
the server was 0 milliseconds ago. The
driver has not received any packets
from the server.

Incorrect server name or port
number.

MySQL Unknown database 'databasename'. Provided database name is incorrect.

3-75

3 Using Visual Query Builder

Connection Error Messages and Probable Causes (Continued)

Vendor Error Message Probable Causes

Oracle Error when connecting to Oracle oci8
database using JDBC driver:

Error using com.mathworks.toolbox.database.databaseConnect/makeDaabaseConnection

Java exception occurred:

java.lang.UnsatisfiedLinkError: no ocijdbc11 in

java.library.pathat

java.lang.ClassLoader.loadLibrary(Unknown Source)at

java.lang.Runtime.loadLibrary0.......

MATLAB cannot find the Oracle
DLL that the oci8 drivers need. To
correct the problem, add the path for
the location of the Oracle DLLs to
$MATLAB/toolbox/local/librarypath.txt.

Oracle Invalid Oracle URL specified:

OracleDataSource.makeURL

DriverType parameter is not
specified.

Oracle The Network Adapter could not
establish the connection.

Either Server or Portnumber is not
specified or has an incorrect value.

Set Database Preferences
1 Select Preferences from the Data Explorer Toolstrip to open the Database
Toolbox Database Explorer Preferences dialog box. These preference
settings apply only to Database Explorer.

3-76

Using Database Explorer

2 Specify the Preferences settings that apply to Database Explorer as
described in the following table.

Preference
Allowable
Values Description

Data
Preview
size:

5 to 10,000
rows

The number of rows you see in the Data Preview pane of
Database Explorer.

Import
batch size:

1,000 to
1,000,000
rows

The number of rows fetched at one time from a database. When
importing large amounts of data using Database Explorer, tune
this value for optimum performance. For more information, see
“Preference Settings for Large Data Import” on page 3-10.

3-77

3 Using Visual Query Builder

From Database Toolbox Database Explorer Preferences dialog box, select
Database Toolbox to manage additional preferences for Database
Toolbox. For more information, see “Working with Preferences” on page
3-6. Alternatively, you can use setdbprefs to specify preferences for the
retrieved data.

3 Click OK.

Display Data from a Single Database Table
After connecting to your database, you can display data in database tables
in the Data Preview pane.

1 Display data in the Data Preview pane by opening the database table
of interest in the Database Browser pane. When a database table is
selected in the Database Browser pane, it is highlighted and there is a
corresponding entry in the SQL Criteria panel on the Database Explorer
Toolstrip. The SQL Criteria panel is where you enter query conditions
for the selected table.

For any given table, you can select the table information any of three ways:

• Click to highlight the database table name. This does not display data in
the Data Preview pane but does update the SQL Criteria panel.

• Select (All) to choose all table columns and display them in the Data
Preview pane.

• Select specific check boxes to choose individual table columns and
display them in the Data Preview pane.

Note The order of the columns in the Data Preview pane matches the
order in which you select them in the Database Browser pane.

3-78

Using Database Explorer

2 Select (All) to choose all database columns or select check boxes for specific
table columns.

3-79

3 Using Visual Query Builder

3 To change your display, select or clear check boxes in the Database
Browser pane. The data updates in the Data Preview pane.

The Data Preview pane displays a limited number of rows. The total
number of rows actually selected in the database appears at the right of
the display. You can change the display size by clicking Preferences and
adjusting the Data Preview size.

Join Data from Multiple Database Tables
After connecting to your database, you can display data from database tables
in the Data Preview pane.

1 Display data in the Data Preview pane by opening the desired database
table in the Database Browser pane. The SQL Criteria panel on the
Database Explorer Toolstrip is updated.

3-80

Using Database Explorer

2 When you select additional tables in the Database Browser pane, the
SQL Criteria panel is updated.

3-81

3 Using Visual Query Builder

3 Display the contents for the selected table using the SQL Criteria panel
to define a join of the selected tables. Click the drop-down lists to specify

3-82

Using Database Explorer

which table column to join the selected tables. The join results appear
in the Data Preview pane.

3-83

3 Using Visual Query Builder

3-84

Using Database Explorer

Define Query Criteria to Refine Results
Database Browser selections and SQL criteria work together.

Using the Database Browser pane and the SQL Criteria panel, you can
define query conditions and display the results in the Data Preview pane.
Each row in the SQL Criteria panel has drop-down controls to define SQL
query conditions. You can create SQL query conditions that span multiple
rows in the SQL Criteria panel.

Note When the right side of a query condition is a custom value that you
enter in the text box, you must press the Enter or Tab key for the query
condition to take effect.

3-85

3 Using Visual Query Builder

Each row in the SQL Criteria panel has four columns to define your SQL
query.

3-86

Using Database Explorer

Column 1 Column 2 Column 3 Column 4

Column 1
defines the SQL
condition type
where supported
values are:

• INNER
JOIN

• LEFT JOIN

• RIGHT
JOIN

• FULL JOIN

• WHERE

• ORDER BY

• AND

• OR

Column
2 defines
the column
names for all
of the tables
selected
in the
Database
Browser
pane.

Column 3 defines
the mathematical
operator for
each row of SQL
statements where
supported values
are:

• =

• !=

• >

• <

• <=

• >=

• LIKE

• NOT LIKE

• IS

• IN

• NOT IN

• ASC

• DES

Depending on the
preceding condition
of the query
statement, Column
4 displays column
names for all of
the tables selected
in the Database
Browser pane.

Use multiple rows in the SQL Criteria panel to define multiple SQL query
statements.

Query Rules Using the SQL Criteria Panel
The control options for the SQL Criteria panel depend on your selections in
the Database Browser pane. The SQL Criteria panel supports multiple
rows for specifying your query criteria. You can add more rows for these
options in the SQL Criteria panel by clicking + or you can remove a row
by clicking -.

3-87

3 Using Visual Query Builder

• If only one table is selected in the Database Browser pane, the available
options for the first query condition areWHERE and ORDER BY.

• If two tables are selected in the Database Browser pane, the available
options for the first query condition are:

- INNER JOIN

- LEFT JOIN

- RIGHT JOIN

- FULL JOIN

- WHERE

- ORDER BY

- AND

- OR

• After you apply a condition for a row in the SQL Criteria panel by using
the Enter or Tab keys, for every subsequent condition that you add, the
first (leftmost) column contains only those query options that produce
semantically correct SQL statements. For example, if the leftmost column
of an applied condition contains an ORDER BY option, if you click + to add
a new query option in a new row, the ORDER BY option from the previous
row can only be followed by another ORDER BY option.

In addition, a Join option can only be followed by another JOIN or
WHERE and a JOIN option cannot follow a WHERE or ORDER BY
option.

• When defining a new query line in the SQL Criteria panel for any
conditions other than a JOIN, the new SQL line does not take effect until
you apply the new line. When you apply a condition, all preceding and
succeeding conditions that are not applied are removed from the SQL
Criteria panel. Similarly, if you click - to remove a query line, if that
query line has been applied, all succeeding conditions are removed. If the
query line has not yet been applied, then only that line is removed from the
SQL Criteria panel.

• When using a WHERE SQL statement with a mathematical operator, to
match a string, you must include the string value in' ' to successfully

3-88

Using Database Explorer

apply the condition. If you use the LIKE or NOT LIKE SQL operator to
match a string, the ' ' are automatically added to the string value.

Note If you click + to add a new query condition between two previously
entered conditions, the available query options do not always produce
semantically correct SQL statements. In this case, you must ensure that
your query options are semantically correct. For best results using the SQL
Criteria panel, add and apply your conditions in sequence.

Query Example Using a Left Outer Join
This example demonstrates how to use a query to obtain supplier and product
information using a LEFT JOIN. To use this example, you must set up a
data source for the tutorial.mdb database. For information on setting up
this data source, see “Set Up the dbtoolboxdemo Data Source” on page 3-64.

1 Open tutorial.mdb in Database Explorer and expand the table suppliers
and select the fields SupplierName, City, and Country.

3-89

3 Using Visual Query Builder

2 Expand the table producttable and select the fields productDescription
and unitCost. The Data Preview pane displays an info message
prompting you to enter a join condition. Also, there are two empty
conditions in the SQL Criteria panel on the Database Explorer Toolstrip.

3-90

Using Database Explorer

3 From the SQL Criteria panel, in the first (topmost) condition, change
the first combo box for condition type to LEFT JOIN. Change the second
combo box to suppliers.SupplierNumber. Change the last combo box to

3-91

3 Using Visual Query Builder

producttable.SupplierNumber. A left join, with the suppliers table on
the left, implies that all the rows in the suppliers table are included in the
final result, and the rows in suppliers that do not have a match with any
row in producttable, are padded with null values in the final result.

In the Data Preview, there are 11 rows that match the query conditions.
For the supplier named The Great Teddy Bear Company, notice that
there is a null in the productDescription and a NaN for unitCost. This
is because there is no product that is supplied by The Great Teddy Bear
Company. If the condition type were INNER JOIN instead of LEFT JOIN,
this row would not be present in the final result.

3-92

Using Database Explorer

3-93

3 Using Visual Query Builder

4 From the SQL Criteria pane, click + at the end of the LEFT JOIN
condition to add a new query condition. Change the first combo box to
WHERE, the second to suppliers.Country, the third to NOT LIKE. In
the last text box, type United State and then enter the new condition
using the Enter or Tab key. The query results display in the Data
Preview pane.

3-94

Using Database Explorer

3-95

3 Using Visual Query Builder

5 Enter the variable name as data in the text box named untitled located
above the table preview, and select Import > Import to import the data
displayed in the Data Preview pane into MATLAB as a variable named
data. For more information about using the MATLAB Variables editor, see
“View, Edit, and Copy Variables”.

3-96

Using Database Explorer

3-97

3 Using Visual Query Builder

Work with Multiple Databases
1 If you have not defined the OBDC or JDBC connection for your new data
source, click Open and select ODBC or JDBC and complete the associated
dialog box. For more information, see “Configure ODBC Data Sources” on
page 3-64 or “Configure JDBC Data Sources” on page 3-69.

2 Select Connect > Connect... to select your new data source.

3 The new data source appears in a new tab in the Database Browser pane.
You can change databases by clicking the associated tab.

Note, you can only use Database Explorer to create SQL queries for a
single database at a time.

In addition, you can work with a different catalog and schema on the same
database server as the one connected to your current data source. To change
to a different catalog and schema:

• Select the catalog/schema from the drop-down list in the address bar of the
Database Browser. For a database system like Microsoft SQL Server that
has a hierarchy of catalogs and schemas, make sure you choose the correct
value for both in order to access data in your tables.

Import Data to the MATLAB Workspace
1 Use the Database Browser pane to select data from a single table or use
the SQL Criteria panel to create a query and display the results in the
Data Preview pane.

2 Name the MATLAB variable by entering it in the untitled text box in the
Data Preview pane.

3 Use the Imported Data panel to define the data structure for a MATLAB
variable to store the data displayed in the Data Preview pane. Supported
data structures are:

• Cell Array

• Numeric

• Structure

• Table

3-98

Using Database Explorer

• Dataset (requires Statistics Toolbox)

4 Select Import > Import to import the data displayed in the Data
Preview pane.

3-99

3 Using Visual Query Builder

Tip When importing large amounts of data, Database Explorer imports
data in batches. The batch size is set to 1,000 rows by default. To change
the batch size, click Preferences and adjust Import batch size.

3-100

Using Database Explorer

5 (Optional) Display the imported data in the MATLAB workspace using the
Variables editor. For more information about using the Variables editor,
see “View, Edit, and Copy Variables”.

6 (Optional) Use MATLAB functions to manipulate the data.

Save Queries as SQL Code
You can save a Database Explorer query as SQL code.

1 Use the Database Browser pane to select data from a single table or
multiple tables. Then use the SQL Criteria panel to create queries and
display the results in the Data Preview pane.

2 After you have created a query using the SQL Criteria panel, click
Import > Generate SQL to display the SQL code in the MATLAB Editor.

3-101

3 Using Visual Query Builder

3 Save the SQL code to a .txt or .sql file. You can then use the SQL
statements to manually rebuild a query using the SQL Criteria panel.

4 Alternatively, you can use the .sql file to import data programmatically
into MATLAB by using runsqlscript.

Generate MATLAB Code
You can generate MATLAB code to automate the steps for accessing data that
you display in the Data Preview pane.

1 Connect to a data source and then use the Database Browser pane to
select data from a single table or use the SQL Criteria panel to create a
query and display the results in the Data Preview pane.

2 Select Import > Generate Script to display MATLAB code in the
MATLAB Editor.

3-102

Using Database Explorer

3 Save the MATLAB code to a file. You can run this code file from the
command line to connect to a data source and run a query.

3-103

3 Using Visual Query Builder

3-104

4

Using Database Toolbox
Functions

• “Getting Started with Database Toolbox Functions” on page 4-2

• “Importing Data from Databases” on page 4-3

• “Viewing Information About Imported Data” on page 4-5

• “Exporting Data to New Record in Database” on page 4-8

• “Replacing Existing Database Data with Exported Data” on page 4-12

• “Exporting Multiple Records from the MATLAB Workspace” on page 4-14

• “Exporting Data Using the Bulk Insert Command” on page 4-18

• “Retrieving Image Data Types” on page 4-25

• “Working with Database Metadata” on page 4-27

• “Using Driver Functions” on page 4-34

• “About Database Toolbox Objects and Methods” on page 4-36

• “Using the exec Function” on page 4-39

• “Using the fetch Function” on page 4-42

4 Using Database Toolbox™ Functions

Getting Started with Database Toolbox Functions
The following sections provide examples of how to use Database Toolbox
functions. MATLAB files that include functions used in some of these
examples are available in matlab/toolbox/database/dbdemos.

Follow these simple examples consecutively when you first start using the
product. Once you are familiar with Database Toolbox usage, refer to these
examples as needed.

4-2

Importing Data from Databases

Importing Data from Databases
This example demonstrates a sample workflow on a demonstration database
called dbtoolboxdemo.

1 Before you connect to a database, set the maximum time that you want to
allow the MATLAB software session to try to connect to a database to 5
seconds.

logintimeout(5)

Note If you are connecting to a database using a JDBC connection, you
need to specify different function syntax in this step. For more information,
see the logintimeout function reference page.

2 Use the database function to define a MATLAB variable, conn, to
represent the returned connection object. Pass the following arguments
to this function:

• The name of the database, which is dbtoolboxdemo for this example

• The username and password

conn = database('dbtoolboxdemo', 'username', 'password')

Enter conn at the command prompt to see the data.

Note If you are connecting to a database using a JDBC connection, you
need to specify different syntax for the database function. Alternatively,
you can use the native ODBC interface for an ODBC connection. For more
information, see the database reference page.

3 Use ping to check that the database connection status is successful.

4 Use the exec function to open a cursor and execute an SQL statement.
Pass the following arguments to exec:

• conn, the name of the connection object

4-3

4 Using Database Toolbox™ Functions

• select productNumber from productTable, a SQL statement that
selects the productNumber column of data from the productTable table

curs = exec(conn, 'select productNumber, productDescription from productTable')

The exec function returns the MATLAB variable curs.

5 The returned data contains strings, so you must convert it to a format that
supports strings. Use setdbprefs to specify the format cellarray:

setdbprefs('DataReturnFormat','cellarray')

6 To stop working now and resume working on the next example at a later
time, close the cursor and the connection as follows:

close(curs);
close(conn);

4-4

Viewing Information About Imported Data

Viewing Information About Imported Data
This example shows how to view information about imported data from the
dbtoolboxdemo data source and close the connection to the database using
the following Database Toolbox functions:

• attr

• close

• cols

• columnnames

• rows

• width

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinfodemo.m.

1 Open the cursor and connection if needed:

conn = database('dbtoolboxdemo', '', '');

curs = exec(conn, 'select productDescription from productTable');

setdbprefs('DataReturnFormat','cellarray');

curs = fetch(curs, 10);

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

2 Use rows to return the number of rows in the data set:

numrows = rows(curs)
numrows =

10

3 Use cols to return the number of columns in the data set:

numcols = cols(curs)
numcols =

1

4-5

4 Using Database Toolbox™ Functions

4 Use columnnames to return the names of the columns in the data set:

colnames = columnnames(curs)
colnames =
'productDescription'

5 Use width to return the column width, or size of the field, for the specified
column number:

colsize = width(curs, 1)
colsize =

50

6 Use attr to view multiple attributes for a column:

attributes = attr(curs)

attributes =

fieldName: 'productDescription'
typeName: 'VARCHAR'

typeValue: 12
columnWidth: 50

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

Tip To import multiple columns, include a colnum argument in attr to
specify the number of columns whose information you want.

7 Close the cursor.

close(curs);

8 Continue with the next example. To stop working now and resume working
on the next example at a later time, close the connection.

4-6

Viewing Information About Imported Data

close(conn);

4-7

4 Using Database Toolbox™ Functions

Exporting Data to New Record in Database
This example does the following:

1 Retrieves sales data from a salesVolume table.

2 Calculates the sum of sales for 1 month.

3 Stores this data in a cell array.

4 Exports this data to a yearlySales table.

You learn to use the following Database Toolbox functions:

• get

• fastinsert

• setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinsertdemo.m.

1 Connect to the data source, dbtoolboxdemo, if needed:

conn = database('dbtoolboxdemo', '', '');

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

2 Use setdbprefs to set the format for retrieved data to numeric:

setdbprefs('DataReturnFormat','numeric')

3 Import ten rows of data the March column of data from the salesVolume
table.

curs = exec(conn, 'select March from salesVolume');
curs = fetch(curs);

4 Assign the data to the MATLAB workspace variable AA:

4-8

Exporting Data to New Record in Database

AA = curs.Data
AA =

981
1414
890
1800
2600
2800
800
1500
1000
821

5 Calculate the sum of the March sales and assign the result to the variable
sumA:

sumA = sum(AA(:))
sumA =

14606

6 Assign the month and sum of sales to a cell array to export to a database.
Put the month in the first cell of exdata:

exdata(1,1) = {'March'}
exdata =

'March'

Put the sum in the second cell of exdata:

exdata(1,2) = {sumA}
exdata =

'March' [14606]

7 Define the names of the columns to which to export data. In this example,
the column names are Month and salesTotal, from the yearlySales
table in the dbtoolboxdemo database. Assign the cell array containing the
column names to the variable colnames:

colnames = {'Month','salesTotal'};

4-9

4 Using Database Toolbox™ Functions

8 Use the get function to determine the current status of the AutoCommit
database flag. This status determines whether the exported data is
automatically committed to the database. If the flag is off, you can undo
an update; if it is on, data is automatically committed to the database.

get(conn, 'AutoCommit')
ans =
on

The AutoCommit flag is set to on, so the exported data is automatically
committed to the database.

9 Use the fastinsert function to export the data into the yearlySales table.
Pass the following arguments to this function:

• conn, the connection object for the database

• yearlySales, the name of the table to which you are exporting data

• The cell arrays colnames and exdata

fastinsert(conn, 'yearlySales', colnames, exdata)

fastinsert appends the data as a new record at the end of the
yearlySales table.

10 In Microsoft Access, view the yearlySales table to verify the results.

11 Close the cursor.

close(curs);

12 Continue with the next example (“Replacing Existing Database Data with
Exported Data” on page 4-12). To stop now and resume working with the
next example at a later time, close the connection.

4-10

Exporting Data to New Record in Database

close(conn);

4-11

4 Using Database Toolbox™ Functions

Replacing Existing Database Data with Exported Data
This example updates the Month field that you previously imported
(“Exporting Data to New Record in Database” on page 4-8) into the
yearlySales table of the dbtoolboxdemo data source using the following
Database Toolbox functions:

• close

• update

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbupdatedemo.m.

1 Change the month in yearlySales table from March to March2010. Assign
the new month value to the newdata cell array.

colnames = {'Month'};
newdata = {'March2010'}
newdata =

'March2010'

2 Specify the record to update in the database by defining a SQL where
statement and assigning it to the variable whereclause. The record to
update is the record whose Month is March. Because the date string is
within a string, it is embedded within two single quotation marks rather
than one.

whereclause = 'where Month = ''March'''
whereclause =
where Month = 'March'

3 Export the data, replacing the record whose Month is March.

update(conn,'yearlySales',colnames,newdata,whereclause)

4 In Microsoft Access, view the yearlySales table to verify the results.

4-12

Replacing Existing Database Data with Exported Data

5 Disconnect from the database.

close(conn);

4-13

4 Using Database Toolbox™ Functions

Exporting Multiple Records from the MATLAB Workspace
This example does the following:

1 Imports monthly sales figures for all products from the dbtoolboxdemo
data source into the MATLAB workspace.

2 Computes total sales for each month.

3 Exports the totals to a new table.

You use the following Database Toolbox functions:

• fastinsert

• setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinsert2demo.m.

1 Ensure that the dbtoolboxdemo data source is writable, that is, not read
only.

2 Use the database function to connect to the data source, assigning the
returned connection object as conn. Pass the following arguments to this
function:

• dbtoolboxdemo, the name of the data source

• username and password, which are passed as empty strings because no
user name or password is required to access the database

conn = database('dbtoolboxdemo', '', '');

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

3 Use the setdbprefs function to specify preferences for the retrieved data.
Set the data return format to numeric and specify that NULL values read
from the database are converted to 0 in the MATLAB workspace.

setdbprefs...

4-14

Exporting Multiple Records from the MATLAB® Workspace

({'NullNumberRead';'DataReturnFormat'},{'0';'numeric'})

When you specify DataReturnFormat as numeric, the value for
NullNumberRead must also be numeric.

4 Import data from the salesVolume table.

curs = exec(conn, 'select * from salesVolume');
curs = fetch(curs);

5 Use columnnames to view the column names in the fetched data set:

columnnames(curs)
ans =
'StockNumber', 'January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October',
'November', 'December'

6 View the data for January (column 2).

curs.Data(:,2)
ans =

1400
2400
1800
3000
4300
5000
1200
3000
3000

0

4-15

4 Using Database Toolbox™ Functions

7 Assign the dimensions of the matrix containing the fetched data set to
m and n.

[m,n] = size(curs.Data)
m =

10
n =

13

8 Use m and n to compute monthly totals. The variable tmp is the sales
volume for all products in a given month c. The variable monthly is the
total sales volume of all products for that month. For example, if c is 2,
row 1 of monthly is the total of all rows in column 2 of curs.Data, where
column 2 is the sales volume for January.

for c = 2:n
tmp = curs.Data(:,c);
monthly(c-1,1) = sum(tmp(:));

end

View the result.

monthly
25100
15621
14606
11944
9965
8643
6525
5899
8632
13170
48345
172000

9 Create a string array containing the column names into which you want to
insert the data, and assign the array to the variable colnames.

colnames{1,1} = 'salesTotal';

4-16

Exporting Multiple Records from the MATLAB® Workspace

10 Use fastinsert to insert the data into the yearlySales table:

fastinsert(conn, 'yearlySales', colnames, monthly)

11 To verify that the data was imported correctly, in Microsoft Access, view
the yearlySales table from the tutorial database.

12 Close the cursor and the database connection.

close(curs);
close(conn);

4-17

4 Using Database Toolbox™ Functions

Exporting Data Using the Bulk Insert Command

In this section...

“Bulk Insert to Oracle” on page 4-18

“Bulk Insert to Microsoft® SQL Server® 2005” on page 4-20

“Bulk Insert to MySQL” on page 4-22

Bulk Insert to Oracle
This example demonstrates how to export data to the Oracle server using the
bulk insert command. To follow this example, use a data file on the local
machine where Oracle is installed.

1 Connect to the Oracle database.

javaaddpath 'path\ojdbc5.jar';
conn = database('databasename','user','password', ...

'oracle.jdbc.driver.OracleDriver', ...
'jdbc:oracle:thin:@machine:port:databasename');

2 Create a table named BULKTEST.

e = exec(conn,['create table BULKTEST (salary number, '...
'player varchar2(25), signed varchar2(25), '...
'team varchar2(25))']);
close(e)

3 Enter data records. A sample record appears as follows.

A = {100000.00,'KGreen','06/22/2011','Challengers'};

4 Expand A to a 10,000-record data set.

A = A(ones(10000,1),:);

5 Write data to a file for bulk insert.

4-18

Exporting Data Using the Bulk Insert Command

Tip When connecting to a database on a remote machine, you must write
this file to the remote machine. Oracle has problems trying to read files
that are not on the same machine as the instance of the database.

fid = fopen('c:\temp\tmp.txt','wt');
for i = 1:size(A,1)

fprintf(fid,'%10.2f \t %s \t %s \t %s \n',A{i,1}, ...
A{i,2},A{i,3},A{i,4});

end
fclose(fid);

6 Set the folder location.

e = exec(conn, ...
'create or replace directory ext as ''C:\\Temp''');

close(e)

7 Delete the temporary table if it exists.

e = exec(conn,'drop table testinsert');
try,close(e),end

8 Create a temporary table and bulk insert it into the table BULKTEST.

e = exec(conn,['create table testinsert (salary number, '...

'player varchar2(25), signed varchar2(25), '...

'team varchar2(25)) organization external '...

'(type oracle_loader default directory ext access '...

'parameters (records delimited by newline fields '...

'terminated by ''\t'') location (''tmp.txt'')) '...

'reject limit 10000']);

close(e)

e = exec(conn,'insert into BULKTEST select * from testinsert');

close(e)

9 Confirm the number of rows and columns in BULKTEST.

4-19

4 Using Database Toolbox™ Functions

e = exec(conn, 'select * from BULKTEST');

results = fetch(e)

results =

Attributes: []

Data: {10000x4 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select * from BULKTEST'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 oracle.jdbc.driver.OracleResultSetImpl]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 oracle.jdbc.driver.OracleStatementWrapper]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

columnnames(results)

ans =

'SALARY','PLAYER','SIGNED','TEAM'

10 Close the connection.

close(conn)

Bulk Insert to Microsoft SQL Server 2005

1 Connect to the Microsoft SQL Server. For JDBC driver use, add the jar
file to the MATLAB javaclasspath.

javaaddpath 'path\sqljdbc4.jar';
conn = database('databasename','user','password', ...

'com.microsoft.sqlserver.jdbc.SQLServerDriver', ...
'jdbc:sqlserver://machine:port;
database=databasename');

2 Create a table named BULKTEST.

4-20

Exporting Data Using the Bulk Insert Command

e = exec(conn,['create table BULKTEST (salary '...
'decimal(10,2), player varchar(25), signed_date '...
'datetime, team varchar(25))']);
close(e)

3 Enter data records. A sample record appears as follows.

A = {100000.00,'KGreen','06/22/2011','Challengers'};

4 Expand A to a 10,000-record data set.

A = A(ones(10000,1),:);

5 Write data to a file for bulk insert.

Tip When connecting to a database on a remote machine, you must write
this file to the remote machine. Microsoft SQL Server has problems trying
to read files that are not on the same machine as the instance of the
database.

fid = fopen('c:\temp\tmp.txt','wt');
for i = 1:size(A,1)

fprintf(fid,'%10.2f \t %s \t %s \t %s \n',A{i,1}, ...
A{i,2},A{i,3},A{i,4});

end

6 Run the bulk insert.

e = exec(conn,['bulk insert BULKTEST from '...
'''c:\temp\tmp.txt''with (fieldterminator = ''\t'', '...
'rowterminator = ''\n'')']);

7 Confirm the number of rows and columns in BULKTEST.

4-21

4 Using Database Toolbox™ Functions

e = exec(conn, 'select * from BULKTEST');
results = fetch(e)

results =

Attributes: []
Data: {10000x4 cell}

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select * from BULKTEST'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 com.microsoft.sqlserver.jdbc.SQLServerResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 com.microsoft.sqlserver.jdbc.SQLServerStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

columnnames(results)

ans =

'salary','player','signed_date','team'

8 Close the connection.

close(conn)

Bulk Insert to MySQL

1 Connect to the MySQL server. For JDBC driver use, add the jar file to
the MATLAB javaclasspath.

javaaddpath 'path\mysql-connector-java-5.1.13-bin.jar';
conn = database('databasename', 'user', 'password', ...

'com.mysql.jdbc.Driver', ...
'jdbc:mysql://machine:port/databasename');

2 Create a table named BULKTEST.

4-22

Exporting Data Using the Bulk Insert Command

e = exec(conn,['create table BULKTEST (salary decimal, '...
'player varchar(25), signed_date varchar(25), '...
'team varchar(25))']);

close(e)

3 Create a data record, such as the one that follows.

A = {100000.00,'KGreen','06/22/2011','Challengers'};

4 Expand A to be a 10,000-record data set.

A = A(ones(10000,1),:);

5 Write data to a file for bulk insert.

Note MySQL reads files saved locally, even if you are connecting to a
remote machine.

fid = fopen('c:\temp\tmp.txt','wt');

for i = 1:size(A,1)

fprintf(fid,'%10.2f \t %s \t %s \t %s \n', ...

A{i,1},A{i,2},A{i,3},A{i,4});

end

fclose(fid);

6 Run the bulk insert. Note the use of local infile.

e = exec(conn,['load data local infile '...

' ''C:\\temp\\tmp.txt'' into table BULKTEST '...

'fields terminated by ''\t'' lines terminated '...

'by ''\n''']);

close(e)

7 Confirm the number of rows and columns in BULKTEST.

4-23

4 Using Database Toolbox™ Functions

e = exec(conn, 'select * from BULKTEST');
results = fetch(e)

results =

Attributes: []
Data: {10000x4 cell}

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select * from BULKTEST'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 com.mysql.jdbc.JDBC4ResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 com.mysql.jdbc.StatementImpl]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

columnnames(results)

ans =

'salary','player','signed_date','team'

8 Close the connection.

close(conn)

4-24

Retrieving Image Data Types

Retrieving Image Data Types
This example retrieves images from the dbtoolboxdemo
data source using a sample file that parses image data,
matlabroot/toolbox/database/vqb/parsebinary.m.

1 Connect to the dbtoolboxdemo data source.

conn = database('dbtoolboxdemo', '', '');

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

2 Specify cellarray as the data return format preference.

setdbprefs('DataReturnFormat','cellarray');

3 Import the InvoiceNumber and Receipt columns of data from the Invoice
table.

curs = exec(conn, 'select InvoiceNumber, Receipt from Invoice')
curs = fetch(curs);

4 View the data you imported.

curs.Data

ans =

[2101] [1948410x1 int8]
[3546] [2059994x1 int8]
[33116] [487034x1 int8]
[34155] [2059994x1 int8]
[34267] [2454554x1 int8]
[37197] [1926362x1 int8]
[37281] [2403674x1 int8]
[41011] [1920474x1 int8]
[61178] [2378330x1 int8]
[62145] [492314x1 int8]
[456789] []
[987654] []

4-25

4 Using Database Toolbox™ Functions

Note Some OTHER data type fields may be empty, indicating that the data
could not pass through the JDBC/ODBC bridge.

5 Assign the image element you want to the variable receipt.

receipt = curs.Data{1,2};

6 Run parsebinary. This program writes the retrieved data to a file, strips
ODBC header information from it, and displays receipt as a bitmap image
in a figure window. Ensure that your current folder is writable so that the
output of parsebinary can be written to it.

cd 'I:\MATLABFiles\myfiles
parsebinary(receipt, 'BMP');

For more information on parsebinary, enter help parsebinary or view its
file in the MATLAB Editor/Debugger by entering open parsebinary.

4-26

Working with Database Metadata

Working with Database Metadata

In this section...

“Accessing Metadata” on page 4-27

“Resultset Metadata Objects” on page 4-33

Accessing Metadata
In this example, you use the following Database Toolbox functions to access
metadata:

• dmd

• get

• supports

• tables

1 Connect to the dbtoolboxdemo data source.

conn = database('dbtoolboxdemo', '', '')
conn =

Instance: 'dbtoolboxdemo'
UserName: ''

Driver: []
URL: []

Constructor: [1x1 ...
com.mathworks.toolbox.database.databaseConnect]

Message: []
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 0
AutoCommit: 'on'

Type: 'Database Object'

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

2 Use the dmd function to create a database metadata objectdbmeta and
return its handle, or identifier:

4-27

4 Using Database Toolbox™ Functions

dbmeta = dmd(conn)

dbmeta = DMDHandle: ...
[1x1 sun.jdbc.odbc.JdbcOdbcDatabaseMetaData]

3 Use the get function to assign database properties data, dbmeta, to the
variable v:

v = get(dbmeta)
v =

AllProceduresAreCallable: 1
AllTablesAreSelectable: 1

DataDefinitionCausesTransactionCommit: 1
DataDefinitionIgnoredInTransactions: 0

DoesMaxRowSizeIncludeBlobs: 0
Catalogs: {4x1 cell}

CatalogSeparator: '.'
CatalogTerm: 'DATABASE'

DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '04.00.0000'

DefaultTransactionIsolation: 2
DriverMajorVersion: 2
DriverMinorVersion: 1

DriverName: [1x31 char]
DriverVersion: '2.0001 (04.00.6200)'

ExtraNameCharacters: [1x29 char]
IdentifierQuoteString: '`'

IsCatalogAtStart: 1
MaxBinaryLiteralLength: 255

MaxCatalogNameLength: 260
MaxCharLiteralLength: 255
MaxColumnNameLength: 64
MaxColumnsInGroupBy: 10

MaxColumnsInIndex: 10
MaxColumnsInOrderBy: 10
MaxColumnsInSelect: 255
MaxColumnsInTable: 255

MaxConnections: 64
MaxCursorNameLength: 64

MaxIndexLength: 255

4-28

Working with Database Metadata

MaxProcedureNameLength: 64
MaxRowSize: 4052

MaxSchemaNameLength: 0
MaxStatementLength: 65000

MaxStatements: 0
MaxTableNameLength: 64
MaxTablesInSelect: 16
MaxUserNameLength: 0
NumericFunctions: [1x73 char]

ProcedureTerm: 'QUERY'
Schemas: {}

SchemaTerm: ''
SearchStringEscape: '\'

SQLKeywords: [1x461 char]
StringFunctions: [1x91 char]

StoresLowerCaseIdentifiers: 0
StoresLowerCaseQuotedIdentifiers: 0

StoresMixedCaseIdentifiers: 0
StoresMixedCaseQuotedIdentifiers: 1

StoresUpperCaseIdentifiers: 0
StoresUpperCaseQuotedIdentifiers: 0

SystemFunctions: ''
TableTypes: {13x1 cell}

TimeDateFunctions: [1x111 char]
TypeInfo: {16x1 cell}

URL: ...
'jdbc:odbc:dbtoolboxdemo'

UserName: 'admin'
NullPlusNonNullIsNull: 0

NullsAreSortedAtEnd: 0
NullsAreSortedAtStart: 0

NullsAreSortedHigh: 0
NullsAreSortedLow: 1

UsesLocalFilePerTable: 0
UsesLocalFiles: 1

4-29

4 Using Database Toolbox™ Functions

Tip For more information about the database metadata properties
returned by get, see the methods of the DatabaseMetaData object on the
Oracle Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.ht

4-30

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

Working with Database Metadata

4 Some information is too long to fit in the display area of the field, so the
size of the field data appears instead. The Catalogs element is shown as a
4-by-1 cell array. View the Catalog information.

v.Catalogs

ans =
'D:\Work\databasetoolboxfiles\tutorial'
'D:\Work\databasetoolboxfiles\tutorial_copy'

5 Use the supports function to see what properties this database supports:

a = supports(dbmeta)
a =

AlterTableWithAddColumn: 1
AlterTableWithDropColumn: 1

ANSI92EntryLevelSQL: 1
ANSI92FullSQL: 0

ANSI92IntermediateSQL: 0
CatalogsInDataManipulation: 1
CatalogsInIndexDefinitions: 1

CatalogsInPrivilegeDefinitions: 0
CatalogsInProcedureCalls: 0

CatalogsInTableDefinitions: 1
ColumnAliasing: 1

Convert: 1
CoreSQLGrammar: 0

CorrelatedSubqueries: 1
DataDefinitionAndDataManipulationTransactions: 1

DataManipulationTransactionsOnly: 0
DifferentTableCorrelationNames: 0

ExpressionsInOrderBy: 1
ExtendedSQLGrammar: 0

FullOuterJoins: 0
GroupBy: 1

GroupByBeyondSelect: 1
GroupByUnrelated: 0

IntegrityEnhancementFacility: 0
LikeEscapeClause: 0

LimitedOuterJoins: 0

4-31

4 Using Database Toolbox™ Functions

MinimumSQLGrammar: 1
MixedCaseIdentifiers: 1

MixedCaseQuotedIdentifiers: 0
MultipleResultSets: 0

MultipleTransactions: 1
NonNullableColumns: 0

OpenCursorsAcrossCommit: 0
OpenCursorsAcrossRollback: 0

OpenStatementsAcrossCommit: 1
OpenStatementsAcrossRollback: 1

OrderByUnrelated: 0
OuterJoins: 1

PositionedDelete: 0
PositionedUpdate: 0

SchemasInDataManipulation: 0
SchemasInIndexDefinitions: 0

SchemasInPrivilegeDefinitions: 0
SchemasInProcedureCalls: 0

SchemasInTableDefinitions: 0
SelectForUpdate: 0

StoredProcedures: 1
SubqueriesInComparisons: 1

SubqueriesInExists: 1
SubqueriesInIns: 1

SubqueriesInQuantifieds: 1
TableCorrelationNames: 1

Transactions: 1
Union: 1

UnionAll: 1

A 1 for a given property indicates that the database supports that property;
a 0 means that the database does not support the property.

Tip For more information about properties that the database supports, see
the methods of the DatabaseMetaData object on the Oracle Java Web site at
http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.ht

4-32

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

Working with Database Metadata

6 Alternatively, use the tables function to retrieve metadata, such as the
names and types of the tables in a catalog in the database. Pass the
following arguments to this function:

• dbmeta, the name of the database metadata object.

• tutorial, the name of the catalog from which you want to retrieve table
names.

t = tables(dbmeta, 'tutorial')
t =

'MSysAccessObjects' 'SYSTEM TABLE'
'MSysIMEXColumns' 'SYSTEM TABLE'
'MSysIMEXSpecs' 'SYSTEM TABLE'
'MSysObjects' 'SYSTEM TABLE'
'MSysQueries' 'SYSTEM TABLE'
'MSysRelationships' 'SYSTEM TABLE'
'inventoryTable' 'TABLE'
'productTable' 'TABLE'
'salesVolume' 'TABLE'
'suppliers' 'TABLE'
'yearlySales' 'TABLE'
'display' 'VIEW'

7 Close the database connection.

close(conn)

Resultset Metadata Objects
Use the resultset function to create resultset objects for cursor object. Then,
use the rsmd function to get metadata information about the resultset objects.

For more information, see the resultset and rsmd function reference pages.

4-33

4 Using Database Toolbox™ Functions

Using Driver Functions
This example uses the following Database Toolbox functions to create driver
and drivermanager objects, and to get and set their properties:

• driver

• drivermanager

• get

• isdriver

• set

Note There is no equivalent MATLAB example available because this
example relies on a specific system-to-JDBC connection and database. Your
configuration is different from the one in this example, so you cannot run
these examples exactly as written. Instead, substitute appropriate values for
your own system. See your database administrator for more information.

1 Connect to the database.

c = database('orc1','scott','tiger',...
'oracle.jdbc.driver.OracleDriver',...
'jdbc:oracle:thin:@144.212.123.24:1822:');

2 Use the driver function to construct a driver object and return
its handle, for a specified database URL string of the form
jdbc:subprotocol:subname.

d = driver('jdbc:oracle:thin:@144.212.123.24:1822:')
DriverHandle: [1x1 oracle.jdbc.driver.OracleDriver]

3 Use the get function to get information, such as version data, for the
driver object.

v = get(d)
v =
MajorVersion: 1

4-34

Using Driver Functions

MinorVersion: 0

4 Use isdriver to verify that d is a valid JDBC driver object.

isdriver(d)
ans =
1

This result shows that d is a valid JDBC driver object. If it is a not valid
JDBC driver object, the returned result is 0.

5 Use the drivermanager function to create a drivermanager object dm.

dm = drivermanager

6 Get properties of the drivermanager object.

v = get(dm)
v =

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630' ...
[1x38 char]}

LoginTimeout: 0
LogStream: []

7 Set the LoginTimeout value to 10 for all drivers loaded during this session.

set(dm,'LoginTimeout',10)

Verify the LoginTimeout value.

v = get(dm)
v =

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630'}
LoginTimeout: 10

LogStream: []

4-35

4 Using Database Toolbox™ Functions

About Database Toolbox Objects and Methods
This toolbox is an object-oriented application. You do not need to be familiar
with the product’s object-oriented implementation to use it; this information
is provided for reference purposes.

Database Toolbox software includes the following objects:

• Cursor

• Database

• Database metadata

• Driver

• Drivermanager

• Resultset

• Resultset metadata

Each object has its own method folder, whose name begins with an @ sign, in
the matlabroot/toolbox/database/database folder. Functions in the folder
for each object provide methods for operating on the object.

Object-oriented characteristics of the toolbox enable you to:

• Use constructor functions to create and return information about objects.

For example, to create a cursor object containing query results, run the
fetch function. The object and stored information about the object are
returned. Because objects are MATLAB structures, you can view elements
of the returned object.

4-36

About Database Toolbox™ Objects and Methods

This example uses the fetch function to create a cursor object curs.

curs = exec(conn, 'select productdescription from producttable');

curs = fetch(curs)

curs =

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select productdescription from producttable'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the contents of the Data element in the cursor object.

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

• Use overloaded functions.

Objects allow the use of overloaded functions, which simplify usage because
you only need to use one function to operate on objects.For example, use
the get function to view properties of an object.

4-37

4 Using Database Toolbox™ Functions

• Create custom methods that operate on Database Toolbox objects and store
them in the MATLAB workspace.

4-38

Using the exec Function

Using the exec Function

In this section...

“About the exec Function” on page 4-39

“Using Cursor Objects” on page 4-39

“Working with Microsoft® Excel®” on page 4-40

“Database Considerations” on page 4-40

About the exec Function
Use the exec function to execute an SQL statement and return the database
cursor object. Here are some general points about using exec:

• Use Database Explorer to query databases as an alternative to using exec.

• exec supports the native ODBC interface.

• Unless noted in this reference page, the exec function supports all valid
SQL statements, such as nested queries.

• The sqlquery argument can be a stored procedure for the database
connection of the form {call sp_name (parm1,parm2,...)}.

• Use exec when the stored procedure returns one or more result sets. For
procedures that return output parameters, use runstoredprocedure.

Using Cursor Objects

• Check curs.Message to find any error messages returned from the
database after query execution. If you would like the error messages to be
thrown to the MATLAB command prompt, use setdbprefs as follows.

setdbprefs('Errorhandling','report');

curs = exec(conn,'select * invalidtablename')

To store error messages in curs.Message instead of sending them to the
MATLAB command prompt, use setdbprefs as follows.

setdbprefs('Errorhandling','store');

4-39

4 Using Database Toolbox™ Functions

• After opening a cursor, use fetch to import data from the cursor. Use
resultset, rsmd, and access the Statement property to get properties of
the cursor.

• You can have multiple cursors open at one time.

• A cursor stays open until you close it using the close function.

Working with Microsoft Excel
For Microsoft Excel, tables in sqlquery are Excel worksheets. By default,
some worksheet names include $. To select data from a worksheet with this
name format, use a SQL statement of the form select * from "Sheet1$"
(or 'Sheet1$') .

Database Considerations

• The order of records in your database is not constant. Use values in column
names to identify records. Use the SQL ORDER BY command to sort records.

• Before you modify database tables, ensure that the database is not open
for editing. If you try to edit the database while it is open, you receive
this MATLAB error:

[Vendor][ODBC Driver] The database engine could not lock
table 'TableName' because it is already in use by
another person or process.

• You might experience issues with text field formats in the Microsoft SQL
Server database management system. Workarounds for these issues are as
follows:

- Convert fields of format NVARCHAR, TEXT, NTEXT, and VARCHAR to CHAR
in the database.

- Use sqlquery to convert data to VARCHAR. For example, run a sqlquery
statement of the form 'select convert(varchar(20),field1) from
table1'.

• The PostgreSQL database management system supports multidimensional
fields, but SQL select statements fail when retrieving these fields unless
you specify an index.

4-40

Using the exec Function

• Some databases require that you include a symbol, such as #, before and
after a date in a query as follows:

curs = exec(conn,'select * from mydb where mydate > #03/05/2005#')

• Some databases require that you include a symbol, such as #, before and
after a date in a query as follows:

curs = exec(conn,'select * from mydb where mydate > #03/05/2005#')

4-41

4 Using Database Toolbox™ Functions

Using the fetch Function

In this section...

“About the fetch Function” on page 4-42

“fetch Workflow” on page 4-42

“Using fetch with a Cursor Object” on page 4-43

“Database Considerations” on page 4-44

About the fetch Function
Use the fetch function to import data into the MATLAB workspace. Here are
some general points about using fetch:

• Use Database Explorer to retrieve data as an alternative to using fetch.

• fetch supports the native ODBC interface.

fetch Workflow
The fetch function runs the appropriate processes to retrieve data depending
on what object you provide to it as an input argument. This function works
with cursor objects and database connection objects for ODBC/JDBC bridge
and JDBC interfaces. This function works with cursor objects only for the
native ODBC interface.

For the JDBC database driver, use the database function to establish a
database connection.

conn = database(...)

Then, fetch runs when you pass a cursor object, curs, to retrieve as an
argument.

curs = exec(conn,sqlquery)
curs = fetch(curs)

The fetch function runs when you pass a database object, conn, to retrieve
as an argument.

4-42

Using the fetch Function

fetch(conn,sqlquery)

Note You can pass conn as an input argument to fetch when you are using
an ODBC/JDBC bridge or a JDBC interface. For the native ODBC interface,
use curs as the input argument.

To create a database connection using the native ODBC interface, use
database.ODBCConnection.

conn = database.ODBCConnection(...)

Then, the fetch function runs when you pass a native ODBC cursor object,
curs, to retrieve as an argument.

curs = exec(conn,sqlquery)
curs = fetch(curs)

When fetch returns a cursor object, you can run many other functions,
such as get and rows. To import data into the MATLAB workspace without
metadata, use fetch with a database connection object as the input argument.

Using fetch with a Cursor Object

• fetch returns data stored in a MATLAB cell array, table, dataset,
structure, or numeric matrix.

• When working with a JDBC or JDBC/ODBC bridge connection established
using database, running fetch on the cursor object returns a new object of
type cursor which points to the same underlying Java objects as the input
cursor. It is therefore best practice to overwrite the input cursor object.
This practice results in only one open cursor object, which consumes less
memory than multiple open cursor objects.

curs = fetch(curs)

After this, you simply need to close this one object. Creating a different
variable for the output cursor object will unnecessarily create two objects
pointing to the same underlying Java statement and result set objects.

4-43

4 Using Database Toolbox™ Functions

With a native ODBC connection established using
database.ODBCConnection, running fetch on the cursor object updates
the input cursor object itself. Depending on whether or not you provide an
output argument, the same object gets copied over to the output. Thus,
there is always only one cursor object created in memory for any of the
following usages:

curs = fetch(curs)
fetch(curs)
curs2 = fetch(curs)

• The next time fetch is run, records are imported starting with the row
following the specified number of rows in rowlimit. If you specify a row
limit of 0, all the rows of data are fetched.

• Fetching large amounts of data can result in memory or speed issues. Use
rowlimit to limit how much data you retrieve at once.

• If 'FetchInBatches' is set to 'yes' in the preferences using setdbprefs,
fetch incrementally fetches the number of rows specified in the
'FetchBatchSize' setting until all the rows returned by the query are
fetched, or until the limited number of rows are fetched, if rowlimit is
specified. Use this method when fetching a large number of rows from
the database.

Caution: Leaving cursor and connection objects open or overwriting open
objects can result in unexpected behavior. Once you finish working with these
objects, you must close them using close.

Database Considerations

• The order of records in your database does not remain constant. Use the
SQL ORDER BY command in your sqlquery statement to sort data.

4-44

5

Functions — Alphabetical
List

attr

Purpose Retrieve attributes of columns in fetched data set

Syntax attributes = attr(curs, colnum)
attributes = attr(curs)

Description attributes = attr(curs, colnum) retrieves attribute information for
the column number colnum in the fetched data set curs.

attributes = attr(curs) retrieves attribute information for all
columns in the fetched data set curs and stores the data in a cell array.

attributes = attr(colnum) displays attributes of column colnum.

A list of returned attributes appears in the following table.

Attribute Description

fieldName Name of the column.

typeName Data type.

typeValue Numerical representation of the data type.

columnWidth Size of the field.

precision Precision value for floating and double data
types; an empty value is returned for strings.

scale Precision value for real and numeric data
types; an empty value is returned for strings.

currency If true, data format is currency.

readOnly If true, data cannot be overwritten.

nullable If true, data can be NULL.

Message Error message returned by fetch.

Examples Example 1 — Get Attributes for One Column

Get column attributes for the fourth column of a fetched data set:

attr(curs, 4)

5-2

attr

ans =
fieldName: 'Age'
typeName: 'LONG'

typeValue: 4
columnWidth: 11

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

Example 2 — Get Attributes for All Columns

1 Get column attributes for curs and assign them to attributes.

attributes = attr(curs)

2 View the attributes of column 4.

attributes(4)
ans =

fieldName: 'Age'
typeName: 'LONG'

typeValue: 4
columnWidth: 11

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

See Also cols | columnnames | columns | fetch | dmd | get | tables | width

5-3

bestrowid

Purpose Unique identifier for row in database table

Syntax b = bestrowid(dbmeta,'cata','sch')
b = bestrowid(dbmeta,'cata','sch','tab')

Description b = bestrowid(dbmeta,'cata','sch') returns the optimal set of
columns in a table that uniquely identifies a row in the schema sch, in
the catalog cata, for the database whose database metadata object is
dbmeta.

b = bestrowid(dbmeta,'cata','sch','tab') returns the optimal set
of columns that uniquely identifies a row in table tab, in the schema
sch, in the catalog cata, for the database whose database metadata
object is dbmeta.

Examples Run bestrowid, passing it the following arguments:

• dbmeta, the database metadata object

• msdb, the catalog

• geck, the schema

• builds, the table
b = bestrowid(dbmeta, 'msdb', 'geck', 'builds')
b =

'build_id'

The result indicates that each entry in the build_id column is unique
and identifies the row.

See Also columns | dmd | get | tables

5-4

clearwarnings

Purpose Clear warnings for database connection or resultset

Syntax clearwarnings(conn)
clearwarnings(rset)

Description clearwarnings(conn) clears warnings reported for the database
connection object conn.

clearwarnings(rset) clears warnings reported for the resultset
object rset.

Tip For command-line help on clearwarnings, use the overloaded
methods:

help database/clearwarnings
help resultset/clearwarnings

See Also database | get | resultset

5-5

close

Purpose Close database connection, cursor, or resultset object

Syntax close(object)

Description close(object) closes object, which frees up resources.

Allowable objects for close are listed in the following table.

Object Description Action Performed by
close (object)

conn Database connection
object or native ODBC
database connection
object

Closes conn

curs Cursor object or native
ODBC cursor object

Closes curs

rset Resultset object Closes rset

Database connections, cursors, and resultset objects remain open
until you close them using the close function. Always close a cursor,
connection, or resultset when you finish using it. Close a cursor before
closing the connection used for that cursor.

Note The MATLAB session closes open cursors and connections when
exiting, but the database might not free up the cursors and connections.

5-6

close

Tip For command-line help on close, use the overloaded methods:

help database/close
help cursor/close
help resultset/close

Examples Close the cursor curs and the connection conn.

close(curs);
close(conn);

See Also fetch | database | exec | resultset

5-7

cols

Purpose Retrieve number of columns in fetched data set

Syntax numcols = cols(curs)

Description numcols = cols(curs) returns the number of columns in the fetched
data set curs.

Examples Display three columns in the fetched data set curs.

numcols = cols(curs)

numcols =
3

See Also attr | columnnames | columnprivileges | columns | fetch | get
| rows | width

How To • “Using the Native ODBC Database Connection” on page 2-12

5-8

columnnames

Purpose Retrieve names of columns in fetched data set

Syntax FIELDSTRING = columnnames(CURSOR)
FIELDSTRING = columnnames(CURSOR,BCELLARRAY)

Description FIELDSTRING = columnnames(CURSOR) returns the column names of
the data selected from a database table. The column names are enclosed
in quotes and separated by commas. (The columnnames function is not
supported for a cursor object returned by the fetchmulti function.)

FIELDSTRING = columnnames(CURSOR,BCELLARRAY) returns the
column names as a cell array of strings when BCELLARRAY is set to true.

Examples 1 Run a SQL query to return all columns from the Microsoft Access
dbtoolboxdemo data source database suppliers table:

sql = 'select * from suppliers'
cursor = exec(connection, sql)
cursor = fetch(cursor)

2 Use columnnames to retrieve all column names for the selected
columns:

fieldString = columnnames(cursor)
fieldString =
'SupplierNumber','SupplierName','City','Country','FaxNumber'

See Also attr | cols | columnprivileges | columns | fetch | get | width

5-9

columnprivileges

Purpose List database column privileges

Syntax lp = columnprivileges(dbmeta,'cata','sch','tab')
lp = columnprivileges(dbmeta,'cata','sch','tab','l')

Description lp = columnprivileges(dbmeta,'cata','sch','tab') returns a list
of privileges for all columns in the table tab, in the schema sch, in
the catalog cata for the database whose database metadata object is
dbmeta.

lp = columnprivileges(dbmeta,'cata','sch','tab','l') returns
a list of privileges for column l in the table tab, in the schema sch, in
the catalog cata for the database whose database metadata object is
dbmeta.

Examples Return a list of privileges for the given database, catalog, schema, table,
and column name:

lp = columnprivileges(dbmeta,'msdb','geck','builds',...
'build_id')
lp =

'builds' 'build_id' {1x4 cell}

View the contents of the third column in lp:

lp{1,3}
ans =

'INSERT' 'REFERENCES' 'SELECT' 'UPDATE'

See Also cols | columns | columnnames | dmd | get

5-10

columns

Purpose Return database table column names

Syntax l = columns(dbmeta, 'cata')
l = columns(dbmeta, 'cata', 'sch')
l = columns(dbmeta, 'cata', 'sch', 'tab')

Description l = columns(dbmeta, 'cata') returns a list of all column names in
the catalog cata for the database whose database metadata object is
dbmeta.

l = columns(dbmeta, 'cata', 'sch') returns a list of all column
names in the schema sch.

l = columns(dbmeta, 'cata', 'sch', 'tab') returns a list of
columns for the table tab.

Examples 1 Run columns for the arguments shown:

l = columns(dbmeta,'orcl', 'SCOTT')
l =

'BONUS' {1x4 cell}
'DEPT' {1x3 cell}
'EMP' {1x8 cell}
'SALGRADE' {1x3 cell}
'TRIAL' {1x3 cell}

The results show the names of the five tables in dbmeta, and cell
arrays containing the column names in each table.

2 View the column names for the BONUS table:

l{1,2}
ans =

'ENAME' 'JOB' 'SAL' 'COMM'

See Also attr | bestrowid | cols | columnnames | columnprivileges | dmd
| get | versioncolumns

5-11

commit

Purpose Make database changes permanent

Syntax commit(conn)

Description commit(conn) makes permanent changes made to the database
connection conn since the last commit or rollback function was run. To
run this function, the AutoCommit flag for conn must be off.

Examples Example 1 — Check the Status of the Autocommit Flag

Check that the status of the AutoCommit flag for connection conn is off.

get(conn,'AutoCommit')
ans =
off

Example 2 — Commit Data to a Database

1 Insert exdata into the columns DEPTNO, DNAME, and LOC in the table
DEPT, for the data source conn.

fastinsert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'},...
exdata)

2 Commit this data.

commit(conn)

See Also database | exec | fastinsert | get | rollback | update

5-12

confds

Purpose Configure JDBC data source for Visual Query Builder

Alternatives Select Define JDBC data sources from the Visual Query Builder
Query menu.

Syntax confds

Description confds displays the VQB Define JDBC data sources dialog box. Use
confds only to build and run queries using Visual Query Builder with
JDBC drivers.

For information about how to use the Define JDBC data sources dialog
box to configure JDBC drivers, see “Configure JDBC Data Sources”.

Tip Use the database function to define JDBC data sources
programmatically.

See Also database | querybuilder

5-13

crossreference

Purpose Retrieve information about primary and foreign keys

Syntax f = crossreference(dbmeta, 'pcata', 'psch', 'ptab', 'fcata',

'fsch', 'ftab')

Description f = crossreference(dbmeta, 'pcata', 'psch', 'ptab',
'fcata', 'fsch', 'ftab') returns information about the relationship
between foreign keys and primary keys for the database whose database
metadata object is dbmeta. The primary key information is for the table
ptab in the primary schema psch. The primary catalog is pcata. The
foreign key information is for the foreign table ftab in the foreign
schema fsch. The foreign catalog is fcata.

Examples Run crossreference to get primary and foreign key information. The
database metadata object is dbmeta, the primary and foreign catalog is
orcl, the primary and foreign schema is SCOTT, the table that contains
the referenced primary key is DEPT, and the table that contains the
foreign key is EMP.

f = crossreference(dbmeta,'orcl','SCOTT','DEPT',...
'orcl','SCOTT','EMP')

f = Columns 1 through 7
'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' ...
'SCOTT' 'EMP'

Columns 8 through 13
'DEPTNO' '1' 'null' '1' 'FK_DEPTNO'...
'PK_DEPT'

The results show the following primary and foreign key information.

Column Description Value

1 Catalog that contains primary key,
referenced by foreign imported key

orcl

2 Schema that contains primary key,
referenced by foreign imported key

SCOTT

5-14

crossreference

Column Description Value

3 Table that contains primary key,
referenced by foreign imported key

DEPT

4 Column name of primary key,
referenced by foreign imported key

DEPTNO

5 Catalog that has foreign key orcl

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name that
references the primary key in another
table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to
the foreign key when the primary key
updates

null

11 Delete rule, that is, what happens to
the foreign key when the primary key
is deleted

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

There is only one foreign key in the schema SCOTT. The table DEPT
contains a primary key DEPTNO that is referenced by the field DEPTNO in
the table EMP. The field DEPTNO in the EMP table is a foreign key.

Tip For a description of the codes for update and delete rules, see the
getCrossReference property on the Oracle Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData

5-15

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

crossreference

See Also dmd | exportedkeys | get | importedkeys | primarykeys

5-16

cursor.fetch

Purpose Import data into MATLAB Workspace from cursor object created by
exec

Alternatives Retrieve data using Database Explorer (dexplore).

Syntax curs = fetch(curs,rowLimit)
curs = fetch(curs)

Description curs = fetch(curs,rowLimit) imports rows of data into the object
curs from the open SQL cursor curs, up to the maximum rowLimit.

curs = fetch(curs) imports rows of data from the open SQL cursor
curs into the object curs, up to rowLimit. Use the set function to
specify rowLimit.

Data is stored in a MATLAB cell array, table, dataset, structure, or
numeric matrix. It is a best practice to assign the object returned by
fetch to the variable curs from the open SQL cursor. This practice
results in only one open cursor object, which consumes less memory
than multiple open cursor objects.

The next time fetch is run, records are imported starting with the row
following the specified rowLimit. If you specify a rowLimit of 0, all the
rows in the resultset are fetched.

If 'FetchInBatches' is set to 'yes' in the preferences using
setdbprefs, cursor.fetch incrementally fetches the number of rows
specified in the 'FetchBatchSize' setting until all the rows returned
by the query are fetched, or until rowLimit number of rows are fetched,
if rowLimit is specified. Use this method when fetching a large number
of rows from the database.

Fetching large amounts of data can result in memory or speed issues.
In this case, use rowLimit to limit how much data you retrieve at once.

5-17

cursor.fetch

Caution: Leaving cursor and connection objects open or overwriting
open objects can result in unexpected behavior. Once you are finished
working with these objects, you must close them using close.

Tips • This page documents fetch for a cursor object. For more information
about using fetch, cursor.fetch, and database.fetch, see fetch.
Unless otherwise noted, fetch in this documentation refers to
cursor.fetch, rather than database.fetch.

• cursor.fetch now supports the native ODBC interface.

Examples Import All Rows of Data Using the Native ODBC Interface

Create a connection conn using the native ODBC interface and the
dbtoolboxdemo data source.

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin')

conn =

ODBCConnection with properties:

Instance: 'dbtoolboxdemo'
UserName: 'admin'
Message: []
Handle: [1x1 database.internal.ODBCConnectHandle]

TimeOut: 0
AutoCommit: 0

Type: 'ODBCConnection Object'

conn has an empty Message property, which means a successful
connection.

Use fetch to import all data into the database.ODBCCursor object,
curs, and store the data in a cell array contained in the cursor object
field curs.Data.

5-18

cursor.fetch

curs = exec(conn,'select productDescription from productTable');

curs = fetch(curs)

curs =

ODBCCursor with properties:

Data: {10x1 cell}

RowLimit: 0

SQLQuery: 'select productDescription from productTable'

Message: []

Type: 'ODBCCursor Object'

Statement: [1x1 database.internal.ODBCStatementHandle]

With the native ODBC interface, curs returns an ODBCCursor Object
instead of a Database Cursor Object.

View the contents of the Data element in the cursor object.

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

Close the cursor object.

close(curs);

5-19

cursor.fetch

Import All Rows of Data

Working with the dbtoolboxdemo data source, use exec to select data
in column City, for example, in table suppliers. Then, use fetch to
import all data from the SQL statement into the cursor object curs,
and store the data in a cell array contained in the cursor object field
curs.Data.

curs = exec(conn,'select City from suppliers');

curs = fetch(curs)

curs =

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select City from suppliers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the contents of the Data element in the cursor object.

curs.Data

ans =

'New York'
'London'
'Adelaide'
'Dublin'
'Boston'
'New York'
'Wellesley'

5-20

cursor.fetch

'Nashua'
'London'
'Belfast'

Close the cursor object.

close(curs);

Import a Specified Number of Rows

Working with the dbtoolboxdemo data source, use the rowLimit
argument to retrieve only the first three rows of data.

curs = exec(conn,'select productdescription from producttable');
curs = fetch(curs,3)

curs =

Attributes: []
Data: {3x1 cell}

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select productdescription from producttable'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the data.

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'

5-21

cursor.fetch

Rerun the fetch function to return the second three rows of data.

curs = fetch(curs,3);

View the data.

curs.Data

ans =

'Painting Set'
'Space Cruiser'
'Building Blocks'

Close the cursor object.

close(curs);

Import Rows Iteratively Until You Retrieve All Data

Working with the dbtoolboxdemo data source, use the rowLimit
argument to retrieve the first two rows of data, and then rerun the
import using a while loop, retrieving two rows at a time. Continue until
you have retrieved all data, which occurs when curs.Data is 'No Data'.

curs = exec(conn,'select productdescription from producttable');
% Initialize rowLimit
rowLimit = 2
% Check for more data. Retrieve and display all data.
while ~strcmp(curs.Data,'No Data')
curs=fetch(curs,rowLimit);
curs.Data(:)

end

rowLimit =

2

5-22

cursor.fetch

ans =

'Victorian Doll'
'Train Set'

ans =

'Engine Kit'
'Painting Set'

ans =

'Space Cruiser'
'Building Blocks'

ans =

'Tin Soldier'
'Sail Boat'

ans =

'Slinky'
'Teddy Bear'

ans =
'No Data'

Close the cursor object.

close(curs);

5-23

cursor.fetch

Import Numeric Data

Working with the dbtoolboxdemo data source, import a column of
numeric data, using the setdbprefs function to specify numeric as
the format for the retrieved data.

curs = exec(conn,'select unitCost from productTable');
setdbprefs('DataReturnFormat','numeric')
curs = fetch(curs,3);
curs.Data

ans =

13
5

16

Close the cursor object.

close(curs);

Import BOOLEAN Data

Import data that includes a BOOLEAN field, using the setdbprefs
function to specify cellarray as the format for the retrieved data.

curs = exec(conn,['select InvoiceNumber, '...
'Paid from Invoice']);
setdbprefs('DataReturnFormat','cellarray')
curs = fetch(curs,5);
A = curs.Data

A =

[2101] [0]
[3546] [1]
[33116] [1]
[34155] [0]
[34267] [1]

5-24

cursor.fetch

View the class of the second column of A.

class(A{1,2})

ans =
logical

Close the cursor object.

close(curs);

Perform Incremental Fetch

Working with the dbtoolboxdemo data source, retrieve data
incrementally to avoid Java heap errors. Use cursor.fetch with the
setdbprefs properties for FetchInBatches and FetchBatchSize to
fetch large data sets.

setdbprefs('FetchInBatches','yes');
setdbprefs('FetchBatchSize','2');
conn = database('dbtoolboxdemo','','');
curs = exec(conn,'select * from productTable');
curs = fetch(curs);
A = curs.Data

A =

[9] [125970] [1003] [13] 'Victorian Doll'
[8] [212569] [1001] [5] 'Train Set'
[7] [389123] [1007] [16] 'Engine Kit'
[2] [400314] [1002] [9] 'Painting Set'
[4] [400339] [1008] [21] 'Space Cruiser'
[1] [400345] [1001] [14] 'Building Blocks'
[5] [400455] [1005] [3] 'Tin Soldier'
[6] [400876] [1004] [8] 'Sail Boat'
[3] [400999] [1009] [17] 'Slinky'
[10] [888652] [1006] [24] 'Teddy Bear'

5-25

cursor.fetch

cursor.fetch internally retrieves data in increments of two rows at
a time. Tune the FetchBatchSize setting depending on the size of
the result set you expect to fetch. For example, if you expect about a
100,000 rows in the output, a batch size of 10,000 is a good starting
point. The larger the FetchBatchSize value, the fewer trips between
Java and MATLAB, and the memory consumption is greater for each
batch. The optimal value for FetchBatchSize is decided based on
several factors like the size per row being retrieved, the Java heap
memory value, the driver’s default fetch size, and system architecture,
and hence, can vary from site to site.

If 'FetchInBatches' is set to 'yes' and the total number of rows
fetched is less than 'FetchBatchSize', MATLAB shows a warning
message and then fetches all the rows. The message is Batch size
specified was larger than the number of rows fetched.

You can exercise a row limit on the final output even when the
FetchInBatches setting is 'yes'.

setdbprefs('FetchInBatches','yes');
setdbprefs('FetchBatchSize','2');
curs = exec(conn,'select * from productTable');
curs = fetch(curs,3);
A = curs.Data

A =

[9] [125970] [1003] [13] 'Victorian Doll'
[8] [212569] [1001] [5] 'Train Set'
[7] [389123] [1007] [16] 'Engine Kit'

In this case, cursor.fetch retrieves the first three rows of
productTable, two rows at a time.

Close the cursor object.

close(curs);

5-26

cursor.fetch

See Also attr | cols | columnnames | database | database.fetch | exec |
fetch | fetchmulti | get | logical | rows | resultset | set | width

Tutorials • “Getting Started with Visual Query Builder” on page 3-2

• “Preference Settings for Large Data Import” on page 3-10

How To • “Working with Visual Query Builder”

• “Retrieving BINARY and OTHER Data Types” on page 3-51

• “Using the Native ODBC Database Connection” on page 2-12

5-27

database

Purpose Connect to database

Syntax conn = database(instance,username,password)
conn = database.ODBCConnection(instance,username,password)

conn = database(instance,username,password,driver,
databaseurl)

conn = database(instance,username,password,Name,Value)

Description conn = database(instance,username,password) returns a database
connection object for the connection to the ODBC data source setup,
instance, via an ODBC driver.

conn = database.ODBCConnection(instance,username,password)
returns a database connection object for the connection to the ODBC
data source setup, instance, via a native ODBC interface.

conn = database(instance,username,password,driver,
databaseurl) connects to the database, instance, via a JDBC driver.

conn = database(instance,username,password,Name,Value)
connects to the database, instance, via JDBC driver with connection
properties specified by one or more Name,Value pair arguments.

Input
Arguments

instance - Data source setup or database name
string

Data source setup or database name, specified as a string. Specify a
data source for ODBC connection, and the database name for JDBC
connection.

username - User name
string

5-28

database

User name required to access the database, specified as a string. If no
user name is required, specify empty strings, ''.

password - Password
string

Password required to access the database, specified as a string. If no
password is required, specify empty strings, ''.

driver - JDBC driver name
string

JDBC driver name, specified as a string. This is the name of the Java
driver that implements the java.sql.Driver interface. It is part of the
JDBC driver name and database connection URL.

databaseurl - Database connection URL
string

Database connection URL, specified as a string. This is a vendor-specific
URL that is typically constructed using connection properties like
server name, port number, database name, and so on. It is part of the
JDBC driver name and database connection URL. If you do not know
the driver name or the URL, you can use name-value pair arguments to
specify individual connection properties.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Vendor','MySQL','Server','remotehost' connects to a
MySQL database on a machine named remotehost.

’Vendor’ - Database vendor
'MySQL' | 'Oracle' | 'Microsoft SQL Server' | 'PostGreSQL'

5-29

database

Database vendor, specified as the comma-separated pair consisting of
'Vendor' and one of the following strings:

• 'MySQL'

• 'Oracle'

• 'Microsoft SQL Server'

• 'PostGreSQL'

If connecting to a database system not listed here, use the driver and
databaseurl syntax.

Example: 'Vendor','Oracle'

’Server’ - Database server
'localhost' (default) | string

Database server name or address, specified as the comma-separated
pair consisting of 'Server' and a string value.

Example: 'Server','remotehost'

’PortNumber’ - Server port
scalar

Server port number that the server is listening on, specified as the
comma-separated pair consisting of 'PortNumber' and a scalar value.

Example: 'PortNumber',1234

Data Types
double

’AuthType’ - Authentication
'Server' (default) | 'Windows'

Authentication type (valid only for Microsoft SQL Server), specified
as the comma-separated pair consisting of 'AuthType' and one of the
following strings:

• 'Server'

5-30

database

• 'Windows'

Specify 'Windows' for Windows Authentication.

Example: 'AuthType','Windows'

’DriverType’ - Driver type
'thin' | 'oci'

Driver type (required only for Oracle), specified as the comma-separated
pair consisting of 'DriverType' and one of the following strings:

• 'thin'

• 'oci'

Example: 'DriverType','thin'

’URL’ - Connection URL
string

Connection URL, specified as the comma-separated pair consisting of
'URL' and a string value. If you specify URL, you might not need to
specify any other properties.

Output
Arguments

conn - Database connection
Database connection object

Database connection, returned as a database connection object. The
database connection object has the following properties:

• Instance

• UserName

• Driver

• URL

• Constructor

• Message

• Handle

5-31

database

• TimeOut

• AutoCommit

• Type

The native ODBC database connection object,
database.ODBCConnection, excludes Driver, URL, and
Constructor properties. For database.ODBCConnection, the
Type property is equal to database.ODBCConnection object.
The Handle property for a database.ODBCConnection object is
database.internal.ODBCConnectHandle, and for JDBC/ODBC bridge
connection, it is sun.jdbc.odbc.JdbcOdbcConnection. For ODBC, the
Instance property contains the data source name, and, for JDBC, the
Instance property contains the database name.

Tips • Use logintimeout before database to set the maximum time for a
connection attempt.

• Alternatively use Visual Query Builder to connect to databases.

• When making a JDBC connection using name-value connection
properties:

- You can skip the Server parameter when connecting to a database
locally.

- You can skip the PortNumber parameter when connecting to a
database server listening on the default port (except for Oracle
connections).

Examples Connect Using the Native ODBC Interface

Connect to the dbtoolboxdemo database using the native ODBC
interface.

Connect to the database with the ODBC data source name,
dbtoolboxdemo, using the user name, admin, and password, admin.

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin')

5-32

database

conn =

ODBCConnection with properties:

Instance: 'dbtoolboxdemo'
UserName: 'admin'
Message: []
Handle: [1x1 database.internal.ODBCConnectHandle]

TimeOut: 0
AutoCommit: 0

Type: 'ODBCConnection Object'

database.ODBCConnection returns conn as database.ODBCConnection
object.

Close the database connection, conn.

close(conn);

ODBC Connection

Connect to the dbtoolboxdemo database.

Connect to the database with the ODBC data source name,
dbtoolboxdemo, using the user name, admin, and password, admin.

conn = database('dbtoolboxdemo','admin','admin')

conn =

Instance: 'dbtoolboxdemo'
UserName: 'admin'

Driver: []
URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]
Message: []
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 0
AutoCommit: 'on'

5-33

database

Type: 'Database Object'

database returns conn as a Database Object.

Close the database connection, conn.

close(conn);

Oracle JDBC Connection Using URL

Connect to an Oracle database using the JDBC driver.

Connect to the database, test_db, using the user name,
scott, and password, tiger. Use the JDBC driver,
oracle.jdbc.driver.OracleDriver, to make the connection. The URL
defined by the driver vendor is jdbc:oracle:oci7:.

conn = database('test_db','scott','tiger',...
'oracle.jdbc.driver.OracleDriver','jdbc:oracle:oci7:')

Oracle JDBC Connection Using Name-Value Connection
Properties

Connect to an Oracle database using the JDBC driver. Specify the
vendor and connection options using name-value pair arguments.

Connect to the database, test_db, using the user name, scott, and
password, tiger. The Database Server machine name is remotehost
and the port number that the server is listening on is 1234.

conn = database('test_db','scott','tiger','Vendor','Oracle',...
'DriverType','oci','Server','remotehost','PortNumber',1234)

MySQL JDBC Connection on the Default Port

Connect to a MySQL database via a JDBC driver. Specify the vendor
and connection options using name-value pair arguments.

Connect to the database, test_db, on the machine, remotehost. Use
the user name, root, and password, matlab.

conn = database('test_db','root','matlab','Vendor','MySQL',...

5-34

database

'Server','remotehost')

Microsoft Access Connection to a Database with .accdb
Format

Connect to a Microsoft Access database with .accdb format using an
OBDC driver.

Connect to the database, MyDatabase.accdb, using dpath and url.

dbpath = ['C:\Data\Matlab\MyDatabase.accdb'];

url = [['jdbc:odbc:Driver={Microsoft Access Driver (*.mdb, *.accdb)};DSN='';DBQ='] dbpath];

con = database('','','','sun.jdbc.odbc.JdbcOdbcDriver', url);

PostGreSQL JDBC Connection to localhost on the Default Port

Connect to a local PostGreSQL database using the JDBC driver. Specify
the vendor and connection options using name-value pair arguments.

Connect to the database, test_db, using the user name, postgres, and
password, matlab.

conn = database('test_db','postgres','matlab','Vendor','PostGreSQL')

Microsoft SQL Server Windows Authenticated Database
Connection

Connect to a Microsoft SQL Server database with integrated Windows
Authentication using a JDBC driver.

Close MATLAB if it is running.

Insert the path to the database driver JAR file in the
javaclasspath.txt file. The updated path entry should include the
full path to the driver. For example:

C:\DB_Drivers\sqljdbc_2.0\enu\sqljdbc4.jar

Insert the path to the folder containing sqljdbc_auth.dll in the
librarypath.txt file. The librarypath.txt file is located at:

5-35

database

$MATLABROOT\toolbox\local\librarypath.txt

The path entry should not include the file name sqljdbc_auth.dll:

C:\DB_Drivers\sqljdbc_2.0\enu\auth\x64

The sqljdbc_auth.dll file is installed in the following location:

<installation>\sqljdbc_<version>\<language>\auth\<arch>

where <installation> is the installation folder of the SQL server
driver.

• If you are running a 32-bit Java Virtual Machine (JVM), then use the
sqljdbc_auth.dll file in the x86 folder, even if the operating system
is the x64 version.

• If you are running a 64-bit JVM on a x64 processor, then use the
sqljdbc_auth.dll file in the x64 folder.

• If you are running a 64-bit JVM on a IA-64 processor, then use the
sqljdbc_auth.dll file in the IA64 folder.

Start MATLAB.

Use the AuthType parameter to establish a Windows Authentication
connection.

conn = database('dbName','','', ...
'Vendor','Microsoft SQL Server','Server','servername',...
'AuthType','Windows')

Definitions JDBC Driver Name and Database Connection URL

The JDBC driver name and database connection URL take different
forms for different databases, as shown in the following table.

5-36

database

Database JDBC Driver Name and Database URL Example Syntax

IBM Informix JDBC Driver: com.informix.jdbc.IfxDriver

Database URL: jdbc:informix-sqli://161.144.202.206:3000:
INFORMIXSERVER=stars

Microsoft SQL
Server 2005

JDBC Driver: com.microsoft.sqlserver.jdbc.SQLServerDriver

Database URL:
jdbc:sqlserver://localhost:port;database=databasename

MySQL JDBC Driver: twz1.jdbc.mysql.jdbcMysqlDriver

Database URL: jdbc:z1MySQL://natasha:3306/metrics

JDBC Driver: com.mysql.jdbc.Driver

Database URL: jdbc:mysql://devmetrics.mrkps.com/testing

To insert or select characters with encodings that are not default,
append the string useUnicode=true&characterEncoding=... to the
URL, where ... is any valid MySQL character encoding. For example,
useUnicode=true&characterEncoding=utf8.

Oracle
oci7 drivers

JDBC Driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:oci7:@rex

Oracle
oci8 Drivers

JDBC Driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:oci8:@111.222.333.44:1521:

Database URL: jdbc:oracle:oci8:@frug

Oracle 10
Connections
with JDBC
(Thin Drivers)

JDBC Driver: oracle.jdbc.driver.OracleDriver
Database URL: jdbc:oracle:thin:

Oracle
Thin Drivers

JDBC Driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:thin:@144.212.123.24:1822:

5-37

http://dev.mysql.com/doc/refman/5.1/en/faqs-cjk.html

database

Database JDBC Driver Name and Database URL Example Syntax

PostgreSQL JDBC Driver: org.postgresql.Driver

Database URL:jdbc:postgresql://host:port/database

PostgreSQL
with SSL
Connection

JDBC Driver: org.postgresql.Driver

Database URL: jdbc:postgresql:servername:dbname:ssl=
true&sslfactory=org.postgresql.ssl.NonValidatingFactory&

The trailing & is required.

Sybase SQL
Server and
Sybase SQL
Anywhere

JDBC Driver: com.sybase.jdbc.SybDriver

Database URL: jdbc:sybase:Tds:yourhostname:yourportnumber/

See Also close | dexplore | dmd | exec | fastinsert | get |
getdatasources | isconnection | isreadonly | logintimeout |
ping | querybuilder | supports | update

Concepts • “Database Connection Error Messages” on page 2-8
• “Bringing Java Classes into MATLAB Workspace”
• “Using the Native ODBC Database Connection” on page 2-12

5-38

database.catalogs

Purpose Get database catalog names

Syntax P = catalogs(conn)

Description P = catalogs(conn) returns the catalogs for the database connection
conn.

See Also get | database.columns | database.schemas | database.tables

5-39

database.columns

Purpose Get database table column names

Syntax P = columns(conn)
P = columns(conn,C)
P = columns(conn,C,S)
P = columns(conn,C,S,T)

Description P = columns(conn) returns all columns for all tables given the
database connection conn.

P = columns(conn,C) returns all columns for all tables of all schemas
for the given catalog C.

P = columns(conn,C,S) returns the columns for all tables for the
given catalog C and schema S.

P = columns(conn,C,S,T) returns the columns for the given database
connection conn, the catalog C, the schema S, and the table T.

See Also get | database.schemas | database.tables

5-40

database.fetch

Purpose Execute SQL statement to import data into MATLAB workspace

Syntax results = fetch(conn,sqlquery)
results = fetch(conn,sqlquery,fetchbatchsize)

Description results = fetch(conn,sqlquery) executes the SQL statement
sqlquery, imports data for the open connection object conn, and returns
the data to results. (For more information on SQL statements, see
exec.)

results = fetch(conn,sqlquery,fetchbatchsize) imports
fetchbatchsize rows of data at a time.

Input
Arguments

conn

A database connection object.

sqlquery

An SQL statement.

fetchbatchsize

Specifies the number of rows of data to import at a time. Use
fetchbatchsize when importing large amounts of data. Retrieving
data in increments, as specified by fetchbatchsize, helps reduce
overall retrieval time. If fetchbatchsize is not provided, a default
value of FetchBatchSize is used. FetchBatchSize is set using
setdbprefs.

Output
Arguments

results

A cell array, table, dataset, structure, or numeric matrix depending on
specifications set by setdbprefs.

Tips • You call the database.fetch function with fetch rather than
database.fetch. You implicitly call database.fetch by passing a
database object, conn, to fetch. The fetch function also works with
a cursor object. See cursor.fetch.

5-41

database.fetch

• The order of records in your database does not remain constant. Use
the SQL ORDER BY command in your sqlquery statement to sort data.

Examples Import Data

Import the productDescription column from the productTable table
in the dbtoolboxdemo database.

conn = database('dbtoolboxdemo','','');
setdbprefs('DataReturnFormat','cellarray')
results = fetch(conn,'select productdescription from producttable')

results =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

If you experience speed and memory issues, use the fetchbatchsize
argument.

View the size of the cell array into which the results were returned.

size(results)

ans =

10 1

5-42

database.fetch

Import Two Columns of Data and View Information About
the Data

Import the InvoiceNumber and Paid columns from the Invoice table
in the dbtoolboxdemo database.

conn = database('dbtoolboxdemo','','');
setdbprefs('DataReturnFormat','cellarray')
results = fetch(conn,['select InvoiceNumber, '...
'Paid from Invoice']);

View the size of the cell array into which the results were returned.

size(results)

ans =

12 2

View the results for the first row of data.

results(1,:)

ans =

[2101] [0]

View the data type of the second element in the first row of data.

class(results{1,2})

ans =

logical

See Also cursor.fetch | database | exec | fetch | logical

How To • “Retrieving Image Data Types” on page 4-25

5-43

database.fetch

• “Preference Settings for Large Data Import” on page 3-10

5-44

database.schemas

Purpose Get database schema names

Syntax P = schemas(conn)

Description P = schemas(conn) returns the schema names for the database
connection conn.

See Also get | database.catalogs | database.columns | database.tables

5-45

database.tables

Purpose Get database table names

Syntax T = tables(conn)
T = tables(conn,C)
T = tables(conn,C,S)

Description T = tables(conn) returns all tables and table types for the database
connection object conn.

T = tables(conn,C) returns all tables and table types for all schemas
of the given catalog name C.

T = tables(conn,C,S) returns the list of tables and table types for the
database with the catalog name C and schema name S.

See Also get | database.catalogs | database.schemas

5-46

datainsert

Purpose Export MATLAB data into database table

Syntax datainsert(connect,tablename,fieldnames,data)

Description datainsert(connect,tablename,fieldnames,data) inserts data from
the MATLAB workspace into a database table.

Tips You can also use the fastinsert function to export MATLAB data into
a database table. The fastinsert function allows more flexibility in
terms of the date and time string format of input data, but it is slower
than datainsert.

Input
Arguments

connect

Database connection object.

tablename

Database table.

fieldnames

String array of database column names.

data

MATLAB cell array or numeric matrix.

If data is a cell array containing MATLAB dates, times, or timestamps,
the dates must be date strings of the form yyyy-mm-dd, times must be
time strings of the form HH:MM:SS, and timestamps must be strings
of the form yyyy-mm-dd HH:MM:SS.FFF. null entries must be empty
strings and any NaNs in the cell array must be converted to empty
strings before calling datainsert.

MATLAB date numbers and NaNs are supported for insert when data is
a numeric array. Date numbers inserted into database date and time
columns convert to java.sql.Date.

5-47

datainsert

Examples Export MATLAB cell array data into the field names col1, col2, and
col2 in the 'inserttable' database table:

datainsert(connect,'inserttable',{'col1','col2','col2'},...
{33.5 8.77 '2010-07-04'})

Export data from a numeric matrix into a database table:

datainsert(connect,'inserttable',{'col1','col2','col2'},...
[33.5 8.77 734323])

See Also fastinsert | insert | update

5-48

dexplore

Purpose Start SQL Database Explorer to import data

Syntax dexplore

Description dexplore starts Database Explorer, which is the Database Toolbox
app for connecting to a database and importing data to the MATLAB
workspace.

Database Explorer is an interactive app that allows you to:

• Create and configure JDBC and ODBC data sources

• Establish multiple connections to databases

• Select tables and columns of interest

• Fine-tune selection using SQL query criteria

• Preview selected data

• Import selected data into MATLAB workspace

• Save generated SQL queries

• Generate MATLAB code

Examples For more information on Database Explorer, after starting Database
Explorer, click Help on the Database Explorer Toolstrip:

Related
Examples

• “Using Database Explorer” on page 3-61

5-49

dmd

Purpose Construct database metadata object

Syntax dbmeta = dmd(conn)

Description dbmeta = dmd(conn) constructs a database metadata object for the
database connection conn. Use get and supports to obtain properties
of dbmeta. Use dmd and get(dbmeta) to obtain information you need
about a database, such as table names required to retrieve data.

For a list of functions that operate on database metadata objects, enter:

help dmd/Contents

Examples Create a database metadata object dbmeta for the database connection
conn and list its properties:

dbmeta = dmd(conn);
v = get(dbmeta)

See Also columns | database | get | supports | tables

5-50

driver

Purpose Construct database driver object

Syntax d = driver('s')

Description d = driver('s') constructs a database driver object d from s, where
s is a database URL string of the form jdbc:odbc:name or name. The
driver object d is the first driver that recognizes s.

Examples d = driver('jdbc:odbc:thin:@144.212.123.24:1822:') creates
driver object d.

See Also get | isdriver | isjdbc | isurl | register

5-51

drivermanager

Purpose Construct database drivermanager object

Syntax dm = drivermanager

Description dm = drivermanager constructs a database drivermanager object
which comprises the properties for all loaded database drivers. Use get
and set to obtain and change the properties of dm.

Examples Create a database drivermanager object and return its properties.

dm = drivermanager
get(dm)

See Also get | register | set

5-52

exec

Purpose Execute SQL statement and open cursor

Syntax curs = exec(conn,sqlquery)
curs = exec(conn,sqlquery,qTimeOut)

Description curs = exec(conn,sqlquery) executes the SQL statement sqlquery
for the database connection conn and returns the cursor object curs.

curs = exec(conn,sqlquery,qTimeOut) executes the SQL statement
with a timeout value qTimeOut.

Input
Arguments

conn - Database connection
connection object

Database connection, specified as a database connection object created
using database.

sqlquery - SQL statement
SQL string

SQL statement, specified as an SQL string to execute.

Data Types
char

qTimeOut - Timeout value
scalar

Timeout value, specified as a scalar denoting the maximum amount of
time in seconds exec tries to execute the SQL statement, sqlquery.

Data Types
double

Output
Arguments

curs - Database cursor
database cursor object

Database cursor, returned as a database cursor object. The properties
of this object are different based on the database connection object.

5-53

exec

For an ODBC/JDBC bridge or a JDBC driver database connection, the
cursor object has the following properties.

Property Description

Attributes Not used.

Data Contains the resulting data after executing
fetch.

DatabaseObject Database connection object or
database.ODBCConnection object that
opened the cursor object.

RowLimit Number of rows to fetch at a time.

SQLQuery SQL statement to execute.

Message Contains the error messages generated from
executing the SQL statement. If this property
is empty, then the SQL statement executed
successfully.

Type Database cursor object or database.ODBCCursor
object type.

ResultSet Java result set object.

Cursor Internal Java representation of a cursor object.

Statement Java statement object.

Fetch Internal Java representation of the fetched data.

For a native ODBC connection, the cursor object has only these
properties from the previous list: Data, RowLimit, SQLQuery, Message,
Type, and Statement.

Examples Select Data from a Database Table Using the Native ODBC
Interface

Create a connection conn using the native ODBC interface and the
dbtoolboxdemo data source.

5-54

exec

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin')

conn =

ODBCConnection with properties:

Instance: 'dbtoolboxdemo'
UserName: 'admin'
Message: []
Handle: [1x1 database.internal.ODBCConnectHandle]

TimeOut: 0
AutoCommit: 0

Type: 'ODBCConnection Object'

conn has an empty Message property, which means a successful
connection.

Select data from productTable that you access using the
database.ODBCConnection object, conn. Assign the returned cursor
object to the variable curs.

sqlquery = 'select * from productTable';
curs = exec(conn,sqlquery)

curs =

ODBCCursor with properties:

Data: 0
RowLimit: 0
SQLQuery: 'select * from productTable'
Message: []

Type: 'ODBCCursor Object'
Statement: [1x1 database.internal.ODBCStatementHandle]

With the native ODBC interface, exec returns curs as
database.ODBCCursor object instead of a Database Cursor Object.

5-55

exec

After you finish with the cursor object, close the cursor.

close(curs);

Select Data from a Database Table

Using the dbtoolboxdemo data source, select data from the suppliers
table that you access using the database connection, conn. Assign the
returned cursor object to the variable curs.

sqlquery = 'select City from suppliers';
curs = exec(conn,sqlquery)

curs =

Attributes: []
Data: 0

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select City from suppliers'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: 0

After you finish with the cursor object, close the cursor.

close(curs);

Select Data from a Database Table with a Timeout Value

Using the dbtoolboxdemo data source, select data from productTable
that you access using the database connection conn with a timeout of
10 seconds. The timeout value specifies the maximum amount of time

5-56

exec

exec tries to execute the SQL statement. Assign the returned cursor
object to the variable curs.

sqlquery = 'select * from productTable';
curs = exec(conn,sqlquery,10)

curs =

Attributes: []
Data: 0

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select * from productTable'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: 0

After you finish with the cursor object, close the cursor.

close(curs);

Select One Column of Data from the Database Table

Using dbtoolboxdemo data source, select stockNumber data from the
productTable table that you access using the database connection
conn. Assign the SQL statement to the variable sqlquery and assign
the returned cursor to the variable curs.

sqlquery = 'select stocknumber from productTable';
curs = exec(conn,sqlquery);

After you are finished with the cursor object, close the cursor.

close(curs);

5-57

exec

Use a Variable in a Query

Using dbtoolboxdemo data source, select data from the productTable
table that you access using the database connection conn, where
productdesc is a variable. In this example, you are prompted to
specify the product description. Your input is assigned to the variable
productdesc.

productdesc = input('Enter your product description: ', 's')

The following prompt appears.

Enter your product description:

Type the following into the MATLAB Command Window.

Train Set

To perform the query using your input, run the following code.

sqlquery = ['select * from productTable' ...
'where productDescription = ' '''' productdesc ''''];
curs = exec(conn,sqlquery);
curs = fetch(curs);
curs.Data

ans =

[8] [212569] [1001] [5] 'Train Set'

The select statement is created by using square brackets to
concatenate the two strings select * from productTable where
productDescription = and 'productdesc'. The pairs of four
quotation marks are needed to create the pair of single quotation marks
that appears in the SQL statement around productdesc. The outer two
marks delineate the next string to concatenate, and two marks are
required inside them to denote a quotation mark inside a string.

5-58

exec

Perform the query without a variable.

sqlquery = ['select * from productTable' ...
'where productDescription = ' '''Engine Kit'''];
curs = exec(conn,sqlquery);
curs = fetch(curs);
curs.Data

ans =

[7] [389123] [1007] [16] 'Engine Kit'

After you are finished with the cursor object, close the cursor.

close(curs);

Roll Back or Commit Data Exported to the Database Table

Use exec to roll back or commit data after running a fastinsert,
insert, or update for which the AutoCommit flag is off.

Roll back data for the database connection conn.

sqlquery = 'rollback';
exec(conn,sqlquery);

When you don’t specify an output argument, MATLAB returns the
results of calling exec into cursor object ans. Assign ans to variable
curs so that MATLAB does not overwrite the cursor object. After you
are finished with the cursor object, close the cursor.

curs = ans;
close(curs);

Commit the data.

sqlquery = 'commit';
exec(conn,sqlquery);

5-59

exec

After you are finished with the cursor object, close the cursor.

curs = ans;
close(curs);

Change the Database Connection Catalog

Change the catalog for the database connection conn to intlprice.

sqlquery = 'Use intlprice';
curs = exec(conn,sqlquery);

After you are finished with the cursor object, close the cursor.

close(curs);

Create a Table and Add a New Column

Use the SQL CREATE command to create the table.

sqlquery = ['CREATE TABLE Person(LastName varchar, '...
'FirstName varchar,Address varchar,Age int)'];

Create the table for the database connection object conn.

exec(conn,sqlquery);

Use the SQL ALTER command to add a new column, City, to the table.

sqlquery = 'ALTER TABLE Person ADD City varchar(30)';
curs = exec(conn,sqlquery);

After you are finished with the cursor object, close the cursor.

close(curs);

5-60

exec

Run a Stored Procedure and Return the Result Set

Use the JDBC interface to connect to a Microsoft SQL Server database,
run a stored procedure, and return the result set. For this example, the
stored procedure getSupplierInfo is defined in the Microsoft SQL
Server database. This stored procedure returns the supplier information
for suppliers of a given city. The procedure definition is as follows.

CREATE PROCEDURE dbo.getSupplierInfo
(@cityName varchar(20))

AS
BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

SELECT * from suppliers where city = @cityName
END
GO

For Microsoft SQL Server, the statement 'SET NOCOUNT ON' suppresses
the results of insert, update or any non-select statements that might
be before the final select query so you can fetch the results of the select
query.

Use exec when the stored procedure returns one or more result sets. For
procedures that return output parameters, use runstoredprocedure.

Using the JDBC interface, connect to the Microsoft SQL Server
database called 'test_db' with the user name 'root' and password
'matlab' using port number 1234. This example assumes your
database server is located on the machine servername.

conn = database('test_db','root','matlab',...
'Vendor','Microsoft SQL Server',...
'Server','servername','PortNumber',1234)

conn =

5-61

exec

Instance: 'test_db'
UserName: 'root'

Driver: []
URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]
Message: []
Handle: [1x1 com.microsoft.sqlserver.jdbc.SQLServerConnection]

TimeOut: 0
AutoCommit: 'on'

Type: 'Database Object'

database returns conn, a connection Database Object for the
'test_db' database.

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

To return the result set in table format, use setdbprefs to set
'DataReturnFormat' to 'table'.

setdbprefs('DataReturnFormat','table');

Run the stored procedure, getSupplierInfo, to return supplier
information for the city of New York using exec with conn.

sqlquery = '{call getSupplierInfo(''New York'')}';
curs = exec(conn,sqlquery)

curs =

Attributes: []
Data: 0

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: '{call getSupplierInfo('New York')}'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 com.microsoft.sqlserver.jdbc.SQLServerResultSet]

5-62

exec

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 com.microsoft.sqlserver.jdbc.SQLServerStateme

Fetch: 0

exec returns a Database Cursor Object, curs, containing the supplier
information.

Retrieve supplier data from curs using fetch.

curs = fetch(curs)

curs =

Attributes: []
Data: [3x5 table]

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: '{call getSupplierInfo('New York')}'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 com.microsoft.sqlserver.jdbc.SQLServerResultS

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 com.microsoft.sqlserver.jdbc.SQLServerStateme

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

curs contains the supplier data from running the stored procedure,
getSupplierInfo, in table format.

Display the supplier data in table format by accessing the contents of
the Data element of curs.

curs.Data

ans =

SupplierNumber SupplierName City
-------------- ------------------ ----------
1001 'Wonder Products' 'New York'

5-63

exec

1006 'ACME Toy Company' 'New York'
1012 'Aunt Jemimas' 'New York'

Country FaxNumber
--------------- --------------
'United States' '212 435 1617'
'United States' '212 435 1618'
'USA' '14678923104'

>>

Close the Database Cursor Object, curs, and then close the
connection Database Object, conn.

close(curs);
close(conn);

Run a Custom Database Function

This example shows how to run a user-defined database function on
Microsoft SQL Server.

Consider a database function, get_prodCount, that gets entry counts
in a table, productTable.

CREATE FUNCTION dbo.get_prodCount()
RETURNS int
AS
BEGIN

DECLARE @PROD_COUNT int
SELECT @PROD_COUNT = count(*) from productTable
RETURN(@PROD_COUNT)

END
GO

Use the database connection, conn, to execute the custom function
from MATLAB.

5-64

exec

sqlquery = 'SELECT dbo.get_prodCount() as num_products';
curs = exec(conn,sqlquery);
curs = fetch(curs);

After you are finished with the cursor object, close the cursor.

close(curs);

See Also close | database | fastinsert | fetch | procedures |
querybuilder | querytimeout | resultset | rsmd | set |
update

Concepts • “Using the exec Function” on page 4-39
• “Using the Native ODBC Database Connection” on page 2-12
• “Data Retrieval Restrictions” on page 1-7

5-65

exportedkeys

Purpose Retrieve information about exported foreign keys

Syntax e = exportedkeys(dbmeta, 'cata', 'sch')
e = exportedkeys(dbmeta, 'cata', 'sch', 'tab')

Description e = exportedkeys(dbmeta, 'cata', 'sch') returns foreign exported
key information (that is, information about primary keys that are
referenced by other tables) for the schema sch, of the catalog cata, for
the database whose database metadata object is dbmeta.

e = exportedkeys(dbmeta, 'cata', 'sch', 'tab') returns
exported foreign key information for the table tab, in the schema sch, of
the catalog cata, for the database whose database metadata object is
dbmeta.

Examples Get foreign exported key information for the schema SCOTT for the
database metadata object dbmeta.

e = exportedkeys(dbmeta,'orcl','SCOTT')
e =

Columns 1 through 7
'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' ...
'SCOTT' 'EMP'

Columns 8 through 13
'DEPTNO' '1' 'null' '1' 'FK_DEPTNO'...

'PK_DEPT'

The results show the foreign exported key information.

Column Description Value

1 Catalog containing primary key that is
exported

null

2 Schema containing primary key that is
exported

SCOTT

5-66

exportedkeys

Column Description Value

3 Table containing primary key that is
exported

DEPT

4 Column name of primary key that is
exported

DEPTNO

5 Catalog that has foreign key null

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is the
column name that references the primary
key in another table

DEPTNO

9 Sequence number within the foreign key 1

10 Update rule, that is, what happens to the
foreign key when the primary key updates

null

11 Delete rule, that is, what happens to the
foreign key when the primary key is deleted

1

12 Foreign key name FK_DEPTNO

13 Primary key name that is referenced by
foreign key

PK_DEPT

In the schema SCOTT, only one primary key is exported to (referenced by)
another table. DEPTNO, the primary key of the table DEPT, is referenced
by the field DEPTNO in the table EMP. The referenced table is DEPT and
the referencing table is EMP. In the DEPT table, DEPTNO is an exported
key. Reciprocally, the DEPTNO field in the table EMP is an imported key.

For a description of codes for update and delete rules, see the
getExportedKeys property on the Oracle Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData

See Also crossreference | dmd | get | importedkeys | primarykeys

5-67

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

fastinsert

Purpose Add MATLAB data to database table

Alternatives • Export data using Visual Query Builder with Data operation set
to Insert.

• Use the datainsert function. The datainsert function is faster
than the fastinsert function, but you must enter dates and times
in a specific format.

Syntax fastinsert(conn,'tablename',colnames,exdata)

Description fastinsert(conn,'tablename',colnames,exdata) exports records
from the MATLAB variable exdata into new rows in an existing
database table tablename via the connection conn. The variable exdata
can be a cell array, numeric matrix, table, dataset, or structure. You do
not specify the type of data you are exporting; the data is exported in
its current MATLAB format. Specify column names for tablename as
strings in the MATLAB cell array colnames. If exdata is a structure,
field names in the structure must match colnames. If exdata is a table
or a dataset, the variable names in the table or dataset must exactly
match colnames.

The status of the AutoCommit flag determines whether fastinsert
automatically commits the data to the database. Use get to view the
AutoCommit flag status for the connection and use set to change it. Use
commit or issue an SQL commit statement using exec to commit the
data to the database. Use rollback or issue an SQL rollback statement
using exec to roll back the data.

Use update to replace existing data in a database.

When working with a JDBC driver connection or a JDBC-ODBC bridge
connection established using the database function, fastinsert offers
improved performance over insert. This is because insert creates
and executes an SQL insert query for each row of data. fastinsert
creates the insert query only once and then allows for the data values
to be plugged in. All rows of data get inserted as a batch resulting in
an overall faster performance over insert. However, since fastinsert

5-68

fastinsert

relies more on driver functions compared to insert, it is possible in
some edge case scenarios that the driver functions do not work as
expected. In such cases, insert might be preferred, especially if the
data to be inserted is small. datainsert is faster than fastinsert but
needs data to be formatted in a specific way and accepts cell arrays and
numeric matrices as input data.

When working with a native ODBC connection established using the
database.ODBCConnection function, fastinsert and insert are
identical. datainsert is not supported for native ODBC connections.

Note fastinsert supports the native ODBC interface. To insert
dates and timestamps with the native ODBC interface, use the format
'YYYY-MM-DD HH:MM:SS.MS'.

Tips • The fastinsert function replaces the insert function. The two
functions have the same syntax, but fastinsert provides better
performance and supports more object types than insert. If
fastinsert does not work as expected, try running insert.

• To reduce conversion time, convert dates to serial date numbers
using datenum before calling fastinsert.

• To insert dates and timestamps with the native ODBC interface, use
the format 'YYYY-MM-DD HH:MM:SS.MS'.

• To insert data into a structure, table, or dataset, use the following
special formatting. Each field or variable in a structure, table or
dataset must be a cell array or double vector of size m*1, where m is
the number of rows to be inserted.

• The order of records in your database is not constant. Use values in
column names to identify records.

• If an error message like the following appears when you run
fastinsert, the table might be open in edit mode.

[Vendor][ODBC Product Driver] The database engine could

5-69

fastinsert

not lock table 'TableName' because it is already in use
by another person or process.

In this case, close the table in the database and rerun the fastinsert
function.

Examples Example 1 — Insert a Table Record Using Native ODBC

1 Create a connection conn using the native ODBC interface and the
dbtoolboxdemo data source.

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin')

conn =

ODBCConnection with properties:

Instance: 'dbtoolboxdemo'
UserName: 'admin'
Message: []
Handle: [1x1 database.internal.ODBCConnectHandle]

TimeOut: 0
AutoCommit: 0

Type: 'ODBCConnection Object'

conn has an empty Message property, which means a successful
connection.

2 Select and display the data from the productTable.

curs = exec(conn, 'select * from productTable');
curs = fetch(curs);
curs.Data

ans =

productNumber stockNumber supplierNumber unitCost produ
------------- ----------- -------------- -------- -----

5-70

fastinsert

9 125970 1003 13 'V
8 212569 1001 5 'T
7 389123 1007 16 'E
2 400314 1002 9 'P
4 400339 1008 21 'S
1 400345 1001 14 'B
5 400455 1005 3 'T
6 400876 1004 8 'S
3 400999 1009 17 'S

10 888652 1006 24 'T

3 Store the column names of productTable in a cell array.

colnames = {'productNumber' 'stockNumber' 'supplierNumber' ...
'unitCost' 'productDescription'};

4 Store the data for the insert in a cell array, exdata. The data
contains productNumber equal to 11, stockNumber equal to 500565,
supplierNumber equal to 1010, unitCost equal to $20, and
productDescription equal to 'Cooking Set'. Then, convert the cell
array to a table, exdata_table.

exdata = {11, 500565, 1010, 20, 'Cooking Set'};
exdata_table = cell2table(exdata,'VariableNames',colnames)

exdata_table =

productNumber stockNumber supplierNumber unitCost pr
------------- ----------- -------------- -------- -
11 500565 1010 20 'C

5 Insert the table data into the productTable.

fastinsert(conn, 'productTable', colnames, exdata_table);

6 Display the data from the productTable again.

curs = exec(conn, 'select * from productTable');

5-71

fastinsert

curs = fetch(curs);
curs.Data

ans =

productNumber stockNumber supplierNumber unitCost produ
------------- ----------- -------------- -------- -----
9 125970 1003 13 'Vict
8 212569 1001 5 'Trai
7 389123 1007 16 'Engi
2 400314 1002 9 'Pain
4 400339 1008 21 'Spac
1 400345 1001 14 'Buil
5 400455 1005 3 'Tin
6 400876 1004 8 'Sail
3 400999 1009 17 'Slin

10 888652 1006 24 'Tedd
11 500565 1010 20 'Cook

A new row appears in the productTable with the data from
exdata_table.

Example 2 — Insert a Record

1 Using the dbtoolboxdemo data source, insert a record consisting
of three columns, productNumber, Quantity, and Price into the
inventoryTable. productNumber is 7777, Quantity is 100, and
Price is 50.00. The database connection is conn. Assign the data
to the cell array exdata.

exdata = {7777, 100, 50.00}

2 Create a cell array containing the column names in inventoryTable.

colnames = {'productNumber', 'Quantity', ' Price'}

3 Insert the data into the database.

5-72

fastinsert

fastinsert(conn, 'inventoryTable', colnames, exdata)

The row of data is added to the inventoryTable table.

Example 3 — Insert Multiple Records

• Using the dbtoolboxdemo data source, insert multiple rows of data
consisting of three columns, productNumber, Quantity, and Price
into the inventoryTable.

exdata = {7778, 125, 23.00; 7779, 1160, 14.7; 7780, 150, 54.5}

• Create a cell array containing the column names in inventoryTable.

colnames = {'productNumber', 'Quantity', ' Price'}

• Insert the data into the database.

fastinsert(conn, 'inventoryTable', colnames, exdata)

The records are inserted into the table.
In addition, there are three sample files for different database vendors
that demonstrate bulk insert:

• matlabroot/toolbox/database/dbdemos/mssqlserverbulkinsert.m

• matlabroot/toolbox/database/dbdemos/mysqlbulkinsert.m

• matlabroot/toolbox/database/dbdemos/oraclebulkinsert.m

Example 4 — Import Records, Perform Calculations, and
Export Data

This example shows how to retrieve sales data from a salesVolume
table, calculate the sum of sales for 1 month, store this data in a cell
array, and export this data to a yearlySales table.

1 Connect to the data source, dbtoolboxdemo, if needed.

conn = database('dbtoolboxdemo', '', '');

5-73

fastinsert

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

2 Use setdbprefs to set the format for retrieved data to numeric.

setdbprefs('DataReturnFormat','numeric')

3 Import 10 rows of data the March column of data from the
salesVolume table.

curs = exec(conn, 'select March from salesVolume');
curs = fetch(curs);

4 Assign the data to the MATLAB workspace variable AA.

AA = curs.Data
AA =

981
1414
890
1800
2600
2800
800
1500
1000
821

5 Calculate the sum of the March sales and assign the result to the
variable sumA.

sumA = sum(AA(:))
sumA =

14606

6 Assign the month and sum of sales to a cell array to export to a
database. Put the month in the first cell of exdata.

5-74

fastinsert

exdata(1,1) = {'March'}
exdata =

'March'

Put the sum in the second cell of exdata.

exdata(1,2) = {sumA}
exdata =

'March' [14606]

7 Define the names of the columns to which to export data. In this
example, the column names are Month and salesTotal, from the
yearlySales table in the dbtoolboxdemo database. Assign the cell
array containing the column names to the variable colnames.

colnames = {'Month','salesTotal'};

8 Use the get function to determine the current status of the
AutoCommit database flag. This status determines whether the
exported data is automatically committed to the database. If the
flag is off, you can undo an update; if it is on, data is automatically
committed to the database.

get(conn, 'AutoCommit')
ans =
on

The AutoCommit flag is set to on, so the exported data is automatically
committed to the database.

9 Use the fastinsert function to export the data into the yearlySales
table. Pass the following arguments to this function.

• conn, the connection object for the database

• yearlySales, the name of the table to which you are exporting
data

• The cell arrays colnames and exdata

5-75

fastinsert

fastinsert(conn, 'yearlySales', colnames, exdata)

fastinsert appends the data as a new record at the end of the
yearlySales table.

10 In Microsoft Access, view the yearlySales table to verify the results.

11 Close the cursor.

close(curs);

Example 5 — Insert Numeric Data

Using the dbtoolboxdemo data source, export exdata, a numeric matrix
consisting of three columns, into the inventoryTable table.

exdata = [25, 439, 60.00]

fastinsert(conn, 'inventoryTable', {'productNumber','Quantity', 'Price'}, exdata)

Example 6 — Insert and Commit Data

1 Working with the dbtoolboxdemo data source, use the SQL commit
function to commit data to a database after it has been inserted. The
AutoCommit flag is off.

Insert the cell array exdata into the column names colnames of the
inventoryTable table.

set(conn, 'AutoCommit', 'off')
exdata = {157, 358, 740.00}
colnames = {'productNumber', 'Quantity', ' Price'}
fastinsert(conn, 'inventoryTable', colnames, exdata)
commit(conn)

5-76

fastinsert

Alternatively, commit the data using an SQL commit statement with
the exec function.

cursor = exec(conn,'commit');

Example 7 — Insert BOOLEAN Data

1 Using the dbtoolboxdemo data source, insert BOOLEAN data (which is
represented as MATLAB type logical) into a database.

conn = database('dbtoolboxdemo', '', '');
P.InvoiceNumber{1} = 2101;
P.Paid{1}=logical(1);
fastinsert(conn,'Invoice',...
{'InvoiceNumber';'Paid'}, P)

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

2 View the new record in the database to verify that the Paid field is
BOOLEAN. In some databases, the MATLAB logical value 0 is shown
as a BOOLEAN false, No, or a cleared check box.

See Also commit | database | exec | insert | logical | querybuilder |
rollback | set | update

Tutorials • “Getting Started with Visual Query Builder” on page 3-2

How To • “Using the Native ODBC Database Connection” on page 2-12

5-77

fetch

Purpose Import data into MATLAB workspace from cursor object or from
execution of SQL statement

Syntax curs = fetch(curs)
curs = fetch(curs,rowlimit)

results = fetch(conn,sqlquery)
results = fetch(conn,sqlquery,fetchbatchsize)

Description curs = fetch(curs) imports all rows of data into the cursor object
curs from the open SQL cursor object curs.

curs = fetch(curs,rowlimit) imports rows of data up to the
maximum number of rows rowlimit.

results = fetch(conn,sqlquery) executes the SQL statement
sqlquery, imports all rows of data in batches for the open database
connection conn, and returns the resulting data results.

results = fetch(conn,sqlquery,fetchbatchsize) imports all rows
of data in batches of a specified number of rows fetchbatchsize at
a time.

Input
Arguments

curs - Database cursor
database cursor object

Database cursor, specified as an open SQL database cursor object
created using exec.

conn - Database connection
connection object

Database connection, specified as a database connection object created
using database.

sqlquery - SQL statement

5-78

fetch

SQL string

SQL statement, specified as an SQL string to execute.

Data Types
char

rowlimit - Row limit
scalar

Row limit, specified as a scalar denoting the number of rows of data to
import from the open SQL cursor object, curs.

Data Types
double

fetchbatchsize - Fetch batch size
scalar

Fetch batch size, specified as a scalar denoting the number of rows of
data to batch at a time. Use fetchbatchsize when importing large
amounts of data. Retrieving data in batches helps reduce overall
retrieval time. If fetchbatchsize is not provided, a default value of
'FetchBatchSize' is used. 'FetchBatchSize' is set using setdbprefs.

Data Types
double

Output
Arguments

curs - Database cursor
database cursor object

Database cursor, returned as a database cursor object populated with
fetched data in the Data property.

results - Result data
cell array | table | data set | structure | numeric matrix

Result data, returned as a cell array, table, data set, structure, or
numeric matrix as specified by 'DataReturnFormat' in setdbprefs.

5-79

fetch

Examples Import All Rows of Data with the Native ODBC Interface
Using the Cursor Object

Create a connection conn using the native ODBC interface and the
dbtoolboxdemo data source.

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin')

conn =

ODBCConnection with properties:

Instance: 'dbtoolboxdemo'
UserName: 'admin'
Message: []
Handle: [1x1 database.internal.ODBCConnectHandle]

TimeOut: 0
AutoCommit: 0

Type: 'ODBCConnection Object'

conn has an empty Message property, which means a successful
connection.

Working with the dbtoolboxdemo data source, use fetch to import all
data into the database.ODBCCursor object, curs, and store the data in
a cell array contained in the cursor object field curs.Data.

curs = exec(conn,'select productDescription from productTable');

curs = fetch(curs)

curs =

ODBCCursor with properties:

Data: {10x1 cell}

RowLimit: 0

SQLQuery: 'select productDescription from productTable'

Message: []

5-80

fetch

Type: 'ODBCCursor Object'

Statement: [1x1 database.internal.ODBCStatementHandle]

With the native ODBC interface, curs returns an ODBCCursor Object
instead of a Database Cursor Object.

View the contents of the Data element in the cursor object.

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

After you are finished with the cursor object, close the cursor object.

close(curs);

Import All Rows of Data Using the Cursor Object

Working with the dbtoolboxdemo data source, use exec to select data
in column City, for example, in table suppliers. Then, use fetch to
import all data from the SQL statement into the cursor object curs,
and store the data in a cell array contained in the cursor object field
curs.Data.

curs = exec(conn,'select City from suppliers');

curs = fetch(curs)

curs =

5-81

fetch

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select City from suppliers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the contents of the Data element in the cursor object.

curs.Data

ans =

'New York'
'London'
'Adelaide'
'Dublin'
'Boston'
'New York'
'Wellesley'
'Nashua'
'London'
'Belfast'

After you are finished with the cursor object, close the cursor object.

close(curs);

Import a Specified Number of Rows Using the Cursor Object

Working with the dbtoolboxdemo data source, use the rowlimit
argument to retrieve only the first three rows of data.

5-82

fetch

curs = exec(conn, 'select productdescription from producttable');
curs = fetch(curs, 3)

curs =

Attributes: []
Data: {3x1 cell}

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select productdescription from producttable'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the data.

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'

Rerun the fetch function to return the second three rows of data.

curs = fetch(curs, 3);

View the data.

curs.Data

ans =

'Painting Set'

5-83

fetch

'Space Cruiser'
'Building Blocks'

After you are finished with the cursor object, close the cursor object.

close(curs);

Import Rows Iteratively Until You Retrieve All Data Using
the Cursor Object

Working with the dbtoolboxdemo data source, use the rowlimit
argument to retrieve the first two rows of data, and then rerun the
import using a while loop, retrieving two rows at a time. Continue until
you have retrieved all data, which occurs when curs.Data is 'No Data'.

curs = exec(conn, 'select productdescription from producttable');
% Initialize rowlimit
rowlimit = 2
% Check for more data. Retrieve and display all data.
while ~strcmp(curs.Data, 'No Data')
curs=fetch(curs,rowlimit);
curs.Data(:)

end

rowlimit =

2

ans =

'Victorian Doll'
'Train Set'

ans =

'Engine Kit'

5-84

fetch

'Painting Set'

ans =

'Space Cruiser'
'Building Blocks'

ans =

'Tin Soldier'
'Sail Boat'

ans =

'Slinky'
'Teddy Bear'

ans =
'No Data'

After you are finished with the cursor object, close the cursor object.

close(curs);

Import Numeric Data Using the Cursor Object

Working with the dbtoolboxdemo data source, import a column of
numeric data, using the setdbprefs function to specify numeric as
the format for the retrieved data.

curs=exec(conn, 'select unitCost from productTable');
setdbprefs('DataReturnFormat','numeric')
curs=fetch(curs,3);
curs.Data

5-85

fetch

ans =

13
5

16

After you are finished with the cursor object, close the cursor object.

close(curs);

Import BOOLEAN Data Using the Cursor Object

Import data that includes a BOOLEAN field, using the setdbprefs
function to specify cellarray as the format for the retrieved data.

curs=exec(conn, ['select InvoiceNumber, '...
'Paid from Invoice']);
setdbprefs('DataReturnFormat','cellarray')
curs=fetch(curs,5);
A=curs.Data

A =

[2101] [0]
[3546] [1]
[33116] [1]
[34155] [0]
[34267] [1]

View the class of the second column of A.

class(A{1,2})

ans =
logical

After you are finished with the cursor object, close the cursor object.

close(curs);

5-86

fetch

Perform Incremental Fetch Using the Cursor Object

Working with the dbtoolboxdemo data source, retrieve data
incrementally to avoid Java heap errors. Use fetch with the
setdbprefs properties for FetchInBatches and FetchBatchSize to
fetch large data sets.

setdbprefs('FetchInBatches', 'yes');
setdbprefs('FetchBatchSize', '2');
conn = database('dbtoolboxdemo', '', '');
curs = exec(conn, 'select * from productTable');
curs = fetch(curs);
A = curs.Data

A =

[9] [125970] [1003] [13] 'Victorian Doll'
[8] [212569] [1001] [5] 'Train Set'
[7] [389123] [1007] [16] 'Engine Kit'
[2] [400314] [1002] [9] 'Painting Set'
[4] [400339] [1008] [21] 'Space Cruiser'
[1] [400345] [1001] [14] 'Building Blocks'
[5] [400455] [1005] [3] 'Tin Soldier'
[6] [400876] [1004] [8] 'Sail Boat'
[3] [400999] [1009] [17] 'Slinky'
[10] [888652] [1006] [24] 'Teddy Bear'

fetch internally retrieves data in increments of two rows at a time.
Tune the FetchBatchSize setting depending on the size of the resultset
you expect to fetch. For example, if you expect about 100,000 rows in
the output, a batch size of 10,000 is a good starting point. The larger
the FetchBatchSize value, the fewer trips between Java and MATLAB,
and the memory consumption is greater for each batch. The optimal
value for FetchBatchSize is decided based on several factors such as
the size per row being retrieved, the Java heap memory value, the
driver’s default fetch size, and system architecture, and hence, may
vary from site to site.

5-87

fetch

If 'FetchInBatches' is set to 'yes' and the total number of rows
fetched is less than 'FetchBatchSize', MATLAB shows a warning
message and then fetches all the rows. The message is: Batch size
specified was larger than the number of rows fetched.

You can exercise a row limit on the final output even when the
FetchInBatches setting is 'yes'.

setdbprefs('FetchInBatches', 'yes');
setdbprefs('FetchBatchSize', '2');
curs = exec(conn, 'select * from productTable');
curs = fetch(curs, 3);
A = curs.Data

A =

[9] [125970] [1003] [13] 'Victorian Doll'
[8] [212569] [1001] [5] 'Train Set'
[7] [389123] [1007] [16] 'Engine Kit'

In this case, fetch retrieves the first three rows of productTable, two
rows at a time.

After you are finished with the cursor object, close the cursor object.

close(curs);

Import Data Using the Database Connection Object

fetch automatically imports data from the specified SQL statement
when you pass a database object, conn, as the first argument. Use this
example when using an ODBC/JDBC bridge or a JDBC interface. For
the native ODBC interface, use curs as the input argument.

Using the dbtoolboxdemo data source that you access using the
database connection object, conn, import the productDescription
column from productTable. Set the data return format to 'cellarray'
using setdbprefs.

5-88

fetch

setdbprefs('DataReturnFormat','cellarray');
sqlquery = 'select productdescription from productTable';

results = fetch(conn, sqlquery)

results =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

View the size of the cell array into which the results were returned.

size(results)

ans =

10 1

Import Data with fetchbatchsize Using the Database
Connection Object

fetch automatically imports data from the specified SQL statement
when you pass a database object, conn, as the first argument. Use this
example when using an ODBC/JDBC bridge or a JDBC interface. For
the native ODBC interface, use curs as the input argument.

Using the dbtoolboxdemo data source that you access using the
database connection object, conn, import the productDescription
column from the productTable by using the fetchbatchsize argument.

setdbprefs('DataReturnFormat','cellarray');

5-89

fetch

sqlquery = 'select productdescription from productTable';
fetchbatchsize = 5;

results = fetch(conn,sqlquery,fetchbatchsize);

fetch returns all the data by importing it in batches of five rows at
a time.

Import Two Columns of Data and View Information About
the Data Using the Database Connection Object

fetch automatically imports data from the specified SQL statement
when you pass a database object, conn, as the first argument. Use this
example when using an ODBC/JDBC bridge or a JDBC interface. For
the native ODBC interface, use curs as the input argument.

Using the dbtoolboxdemo data source that you access using the
database connection object, conn, import the InvoiceNumber and
Paid columns from the Invoice table. Set the data return format to
'cellarray' using setdbprefs.

setdbprefs('DataReturnFormat','cellarray');
sqlquery = 'select InvoiceNumber, Paid from Invoice';

results = fetch(conn, sqlquery);

View the size of the cell array into which the results were returned.

size(results)

ans =

12 2

View the results for the first row of data.

results(1,:)

ans =

5-90

fetch

[2101] [0]

View the data type of the second element in the first row of data.

class(results{1,2})

ans =

logical

See Also close | database | setdbprefs | exec | logical

Related
Examples

• “Retrieving Image Data Types” on page 4-25

Concepts • “Using the fetch Function” on page 4-42
• “Using the Native ODBC Database Connection” on page 2-12
• “Preference Settings for Large Data Import” on page 3-10
• “Data Retrieval Restrictions” on page 1-7

5-91

fetchmulti

Purpose Import data from multiple resultsets

Syntax curs = fetchmulti(curs)

Description curs = fetchmulti(curs) imports data from the open SQL cursor
object curs into the object curs, where the open SQL cursor object
contains multiple resultsets.

Multiple resultsets are retrieved via exec with a sqlquery statement
that runs a stored procedure consisting of two select statements.

cursmulti.Data contains data from each resultset associated with
cursmulti.Statement. cursmulti.Data is a cell array consisting of cell
arrays, structures, or numeric matrices as specified in setdbprefs; the
data type is the same for all resultsets.

Examples Use exec to run a stored procedure that includes multiple select
statements and fetchmulti to retrieve the resulting multiple resultsets.

conn = database(...)
setdbprefs('DataReturnFormat','cellarray')
curs = exec(conn, '{call sp_1}');
curs = fetchmulti(curs)
Attributes: []

Data: {{10x1 cell} {12x4 cell}}
DatabaseObject: [1x1 database]

RowLimit: 0
SQLQuery: '{call sp_1}'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
[1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: ...
[1x1 com.mathworks.toolbox.database.fetchTheData]

5-92

fetchmulti

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

See Also fetch | database | exec | setdbprefs

5-93

get

Purpose Retrieve object properties

Syntax v = get(object)
v = get(object, 'property')
v.property

Description v = get(object) returns a structure that contains object and its
corresponding properties, and assigns the structure to v.

v = get(object, 'property') retrieves the value of property for
object and assigns the value to v.

v.property returns the value of property after you have created v
by running get.

Use set(object) to view a list of writable properties for object.

Allowable objects include:

• “Database Connection Objects” on page 5-95, which are created using
database

• “Cursor Objects” on page 5-96, which are created using exec or fetch

• “Driver Objects” on page 5-97, which are created using driver

• “Database Metadata Objects” on page 5-97, which are created using
dmd

• “Drivermanager Objects” on page 5-97, which are created using
drivermanager

• “Resultset Objects” on page 5-98, which are created using resultset

• “Resultset Metadata Objects” on page 5-98, which are created using
rsmd

If you call these objects from applications that use Oracle Java, you can
get more information about object properties from the Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.ht

5-94

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

get

Database Connection Objects

Allowable property names and returned values for database connection
objects appear in the following table.

Property Value

'AutoCommit' Status of the AutoCommit flag. It is either on or off,
as specified by set

'Catalog' Name of the catalog in the data source. You may need
to extract a single catalog name from 'Catalog' for
functions such as columns, which accept only a single
catalog.

'Driver' Driver used for a JDBC connection, as specified by
database

'Handle' Identifies a JDBC connection object

'Instance' Name of the data source for an ODBC connection or
the name of a database for a JDBC connection, as
specified by database

'Message' Error message returned by database

'ReadOnly' 1 if the database is read only; 0 if the database is
writable

'TimeOut' Value for LoginTimeout

'TransactionIsolation' Value of current transaction isolation mode

'Type' Object type, specifically Database Object

'URL' For JDBC connections only, the JDBC URL
objectjdbc:subprotocol:subname, as specified by
database

'UserName' User name required to connect to a given database,
as specified by database

'Warnings' Warnings returned by database

5-95

get

Cursor Objects

Allowable property names and returned values for cursor objects appear
in the following table.

Property Value

'Attributes' Cursor attributes. This field is always
empty. Use the attr function to retrieve
cursor attributes.

'Data' Data in the cursor object data element (the
query results)

'DatabaseObject' Information about a given database object

'RowLimit' Maximum number of rows returned by
fetch, as specified by set

'SQLQuery' SQL statement for a cursor, as specified by
exec

'Message' Error message returned from exec or fetch

'Type' Object type, specifically Database Cursor
Object

'ResultSet' Resultset object identifier

'Cursor' Cursor object identifier

'Statement' Statement object identifier

Note If you specify a value (in seconds) for
the timeout argument, queries time out
after the time exceeds the given value.

'Fetch' 0 for cursor created using exec;
fetchTheData for cursor created using
fetch

5-96

get

Driver Objects

Allowable property names and examples of values for driver objects
appear in the following table.

Property Example of Value

'MajorVersion' 1

'MinorVersion' 1001

Database Metadata Objects

Database metadata objects have many properties. Some allowable
property names and examples of their values appear in the following
table.

Property Example of Value

'Catalogs' {4x1 cell}

'DatabaseProductName' 'ACCESS'

'DatabaseProductVersion' '03.50.0000'

'DriverName' 'JDBC-ODBC Bridge (odbcjt32.dll)'

'MaxColumnNameLength' 64

'MaxColumnsInOrderBy' 10

'URL' 'jdbc:odbc:dbtoolboxdemo'

'NullsAreSortedLow' 1

Drivermanager Objects

Allowable property names and examples of values for drivermanager
objects appear in the following table.

5-97

get

Property Example of Value

'Drivers' {'oracle.jdbc.driver.OracleDriver@1d8e09ef'
[1x37 char]}

'LoginTimeout' 0

'LogStream' []

Resultset Objects

Allowable property names and examples of values for resultset objects
appear in the following table.

Property Example of Value

'CursorName' {'SQL_CUR92535700x'
'SQL_CUR92535700x'}

'MetaData' {1x2 cell}

'Warnings' {[] []}

Resultset Metadata Objects

Allowable property names and examples of values for a resultset
metadata objects appear in the following table.

Property Example of Value

'CatalogName' {'' ''}

'ColumnCount' 2

'ColumnName' {'Calc_Date' 'Avg_Cost'}

'ColumnTypeName' {'TEXT' 'LONG'}

'TableName' {'' ''}

'isNullable' {[1] [1]}

'isReadOnly' {[0] [0]}

5-98

get

The empty strings for CatalogName and TableName indicate that
databases do not return these values.

For command-line help on get, use the overloaded methods:

help cursor/get
help database/get
help dmd/get
help driver/get
help drivermanager/get
help resultset/get
help rsmd/get

Examples Example 1 — Get Connection Property and Data Source
Name

Connect to the database dbtoolboxdemo, and then get the name of the
data source for the connection and assign it to v.

conn = database('dbtoolboxdemo', '', '');
v = get(conn, 'Instance')

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

Example 2 — Get Connection Property and AutoCommit Flag
Status

Check the status of the AutoCommit flag for the database connection
conn.

get(conn, 'AutoCommit')

ans =
on

Example 3 — Display Data in Cursor

Display data in the cursor object curs by running:

curs = exec(conn, 'select productdescription from producttable')

5-99

get

curs = fetch(curs);
get(curs, 'Data')

or:

curs.Data

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'
'Painting Set'
'Space Cruiser'
'Building Blocks'
'Tin Soldier'
'Sail Boat'
'Slinky'
'Teddy Bear'

Example 4 — Get Database Metadata Object Properties

1 View the properties of the database metadata object for connection
conn.

dbmeta = dmd(conn);

v = get(dbmeta)

v =

AllProceduresAreCallable: 1

AllTablesAreSelectable: 1

DataDefinitionCausesTransactionCommit: 1

DataDefinitionIgnoredInTransactions: 0

DoesMaxRowSizeIncludeBlobs: 0

Catalogs: {8x1 cell}

CatalogSeparator: '.'

CatalogTerm: 'DATABASE'

5-100

get

DatabaseProductName: 'ACCESS'

DatabaseProductVersion: '04.00.0000'

DefaultTransactionIsolation: 2

DriverMajorVersion: 2

DriverMinorVersion: 1

DriverName: 'JDBC-ODBC Bridge (ACEODBC.DLL)'

DriverVersion: '2.0001 (Microsoft Access database engine)'

ExtraNameCharacters: '~@#$%^&*_-+=\}{"';:?/><,.![]|'

IdentifierQuoteString: '`'

IsCatalogAtStart: 1

MaxBinaryLiteralLength: 255

MaxCatalogNameLength: 260

MaxCharLiteralLength: 255

MaxColumnNameLength: 64

MaxColumnsInGroupBy: 10

MaxColumnsInIndex: 10

MaxColumnsInOrderBy: 10

MaxColumnsInSelect: 255

MaxColumnsInTable: 255

MaxConnections: 64

MaxCursorNameLength: 64

MaxIndexLength: 255

MaxProcedureNameLength: 64

MaxRowSize: 4052

MaxSchemaNameLength: 0

MaxStatementLength: 65000

MaxStatements: 0

MaxTableNameLength: 64

MaxTablesInSelect: 16

MaxUserNameLength: 0

NumericFunctions: [1x73 char]

ProcedureTerm: 'QUERY'

Schemas: {}

SchemaTerm: ''

SearchStringEscape: '\'

SQLKeywords: [1x255 char]

StringFunctions: [1x91 char]

5-101

get

StoresLowerCaseIdentifiers: 0

StoresLowerCaseQuotedIdentifiers: 0

StoresMixedCaseIdentifiers: 0

StoresMixedCaseQuotedIdentifiers: 1

StoresUpperCaseIdentifiers: 0

StoresUpperCaseQuotedIdentifiers: 0

SystemFunctions: ''

TableTypes: {18x1 cell}

TimeDateFunctions: [1x111 char]

TypeInfo: {16x1 cell}

URL: 'jdbc:odbc:tutorial2'

UserName: 'admin'

NullPlusNonNullIsNull: 0

NullsAreSortedAtEnd: 0

NullsAreSortedAtStart: 0

NullsAreSortedHigh: 0

NullsAreSortedLow: 1

UsesLocalFilePerTable: 0

UsesLocalFiles: 1

2 To view names of the catalogs in the database, run:

v.Catalogs
ans =

'D:\matlab\toolbox\database\dbdemos\db1'
'D:\matlab\toolbox\database\dbdemos\origtutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial1'

See Also columns | fetch | database | dmd | driver | drivermanager | exec |
getdatasources | resultset | rows | rsmd | set

5-102

getdatasources

Purpose Return names of ODBC and JDBC data sources on system

Syntax d = getdatasources

Description d = getdatasources returns the names of valid ODBC and JDBC data
sources on the system as a cell array d of strings. The function gets
the names of ODBC data sources from the ODBC.INI file located in the
folder returned by running:

myODBCdir = getenv('WINDIR')

d is empty when the ODBC.INI file is valid, but no data sources are
defined. d equals -1 when the ODBC.INI file cannot be opened.

The function also retrieves the names of data sources that are in the
system registry but not in the ODBC.INI file.

If you do not have write access to myODBCdir, the results of
getdatasources may not include data sources that you recently
added. In this case, specify a temporary, writable, output folder via the
preference TempDirForRegistryOutput. For more information about
this preference, see setdbprefs.

getdatasources gets the names of JDBC data sources from the file
that you define using setdbprefs or the Define JDBC data sources
dialog box.

Examples Get the names of databases on your system.

d = getdatasources
d =

'MS Access Database' 'dbtoolboxdemo'

See Also database | get | setdbprefs

5-103

importedkeys

Purpose Return information about imported foreign keys

Syntax i = importedkeys(dbmeta, 'cata', 'sch')
i = importedkeys(dbmeta, 'cata', 'sch', 'tab')

Description i = importedkeys(dbmeta, 'cata', 'sch') returns foreign imported
key information, that is, information about fields that reference primary
keys in other tables, in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta.

i = importedkeys(dbmeta, 'cata', 'sch', 'tab') returns foreign
imported key information in the table tab. In turn, fields in tab
reference primary keys in other tables in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta.

Examples Get foreign key information for the schema SCOTT in the catalog orcl,
for dbmeta.

i = importedkeys(dbmeta,'orcl','SCOTT')
i =

Columns 1 through 7
'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' ...
'SCOTT' 'EMP'

Columns 8 through 13
'DEPTNO' '1' 'null' '1' 'FK_DEPTNO'...
'PK_DEPT'

The results show foreign imported key information as described in the
following table.

Column Description Value

1 Catalog containing primary key, referenced
by foreign imported key

orcl

2 Schema containing primary key, referenced
by foreign imported key

SCOTT

5-104

importedkeys

Column Description Value

3 Table containing primary key, referenced by
foreign imported key

DEPT

4 Column name of primary key, referenced by
foreign imported key

DEPTNO

5 Catalog that has foreign imported key orcl

6 Schema that has foreign imported key SCOTT

7 Table that has foreign imported key EMP

8 Foreign key column name, that is the column
name that references the primary key in
another table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to the
foreign key when the primary key updates

null

11 Delete rule, that is, what happens to the
foreign key when the primary key is deleted

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

In the schema SCOTT, there is only one foreign imported key. The table
EMP contains a field, DEPTNO, that references the primary key in the
DEPT table, the DEPTNO field.

EMP is the referencing table and DEPT is the referenced table.

DEPTNO is a foreign imported key in the EMP table. Reciprocally, the
DEPTNO field in the table DEPT is an exported foreign key and the
primary key.

For a description of the codes for update and delete rules, see the
getImportedKeys property on the Oracle Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData

5-105

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

importedkeys

See Also crossreference | dmd | exportedkeys | get | primarykeys

5-106

indexinfo

Purpose Return indices and statistics for database tables

Syntax x = indexinfo(dbmeta, 'cata', 'sch', 'tab')

Description x = indexinfo(dbmeta, 'cata', 'sch', 'tab') returns indices and
statistics for the table tab, in the schema sch, of the catalog cata, for
the database whose database metadata object is dbmeta.

Examples Get index and statistics information for the table DEPT in the schema
SCOTT of the catalog orcl, for dbmeta.

x = indexinfo(dbmeta,'','SCOTT','DEPT')
x =
Columns 1 through 8
'orcl' 'SCOTT' 'DEPT' '0' 'null' 'null' '0' '0'
'orcl' 'SCOTT' 'DEPT' '0' 'null' 'PK_DEPT' '1' '1'

Columns 9 through 13
'null' 'null' '4' '1' 'null'
'DEPTNO' 'null' '4' '1' 'null'

The results contain two rows, meaning there are two index columns.
The statistics for the first index column appear in the following table.

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Not unique: 0 if index values can be
not unique, 1 otherwise

0

5 Index catalog null

6 Index name null

7 Index type 0

5-107

indexinfo

Column Description Value

8 Column sequence number within
index

0

9 Column name null

10 Column sort sequence null

11 Number of rows in the index table or
number of unique values in the index

4

12 Number of pages used for the table or
number of pages used for the current
index

1

13 Filter condition null

For more information about the index information, see the
getIndexInfo property on the Oracle Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.ht

See Also dmd | get | tables

5-108

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

insert

Purpose Add MATLAB data to database tables

Syntax insert(conn,'tab',colnames,exdata)

Description insert(conn,'tab',colnames,exdata)

insert exports records from the MATLAB variable exdata into new
rows in an existing database table tablename via the connection conn.
The variable exdata can be a cell array, numeric matrix, table, dataset,
or structure. You do not specify the type of data you are exporting;
the data is exported in its current MATLAB format. Specify column
names for tablename as strings in the MATLAB cell array colnames. If
exdata is a structure, field names in the structure must exactly match
colnames. If exdata is a table or a dataset, the variable names in the
table or dataset must exactly match colnames.

When working with a JDBC driver connection or a JDBC-ODBC bridge
connection established using the database function, fastinsert offers
improved performance over insert. This is because insert creates
and executes an SQL insert query for each row of data. fastinsert
creates the insert query only once and then allows for the data values
to be plugged in. All rows of data get inserted as a batch resulting in
an overall faster performance over insert. However, since fastinsert
relies more on driver functions compared to insert, it is possible in
some edge case scenarios that the driver functions do not work as
expected. In such cases, insert might be preferred, especially if the
data to be inserted is small. datainsert is faster than fastinsert but
needs data to be formatted in a specific way and accepts cell arrays and
numeric matrices as input data.

When working with a native ODBC connection established using the
database.ODBCConnection function, fastinsert and insert are
identical. datainsert is not supported for native ODBC connections.

insert uses the same syntax as fastinsert.

5-109

insert

Notes:

• insert supports the native ODBC interface. To insert dates
and timestamps with the native ODBC interface, use the format
'YYYY-MM-DD HH:MM:SS.MS'.

• To insert data into a structure, table, or dataset, use the following
special formatting. Each field or variable in a structure, table, or
dataset must be a cell array or double vector of size m*1, where m is
the number of rows to be inserted.

Examples Example 1 — Insert a Table Record Using Native ODBC

1 Create a connection conn using the native ODBC interface and the
dbtoolboxdemo data source.

conn = database.ODBCConnection('dbtoolboxdemo','admin','admin')

conn =

ODBCConnection with properties:

Instance: 'dbtoolboxdemo'
UserName: 'admin'
Message: []
Handle: [1x1 database.internal.ODBCConnectHandle]

TimeOut: 0
AutoCommit: 0

Type: 'ODBCConnection Object'

conn has an empty Message property, which means a successful
connection.

2 Select and display the data from the productTable.

curs = exec(conn, 'select * from productTable');

5-110

insert

curs = fetch(curs);
curs.Data

ans =

productNumber stockNumber supplierNumber unitCost pr
------------- ----------- -------------- -------- -
9 125970 1003 13 'V
8 212569 1001 5 'T
7 389123 1007 16 'E
2 400314 1002 9 'P
4 400339 1008 21 'S
1 400345 1001 14 'B
5 400455 1005 3 'T
6 400876 1004 8 'S
3 400999 1009 17 'S

10 888652 1006 24 'T

3 Store the column names of productTable in a cell array.

colnames = {'productNumber' 'stockNumber' 'supplierNumber' ...
'unitCost' 'productDescription'};

4 Store the data for the insert in a cell array, exdata. The data
contains productNumber equal to 11, stockNumber equal to 400565,
supplierNumber equal to 1010, unitCost equal to $10, and
productDescription equal to 'Rubik''s Cube'. Then, convert the
cell array to a table, exdata_table.

exdata = {11, 400565, 1010, 10, 'Rubik''s Cube'};
exdata_table = cell2table(exdata,'VariableNames',colnames)

exdata_table =

productNumber stockNumber supplierNumber unitCost pr
------------- ----------- -------------- -------- -
11 400565 1010 10 'R

5-111

insert

5 Insert the table data into the productTable.

insert(conn, 'productTable', colnames, exdata_table);

6 Display the data from the productTable again.

curs = exec(conn, 'select * from productTable');
curs = fetch(curs);
curs.Data

ans =

productNumber stockNumber supplierNumber unitCost produ
------------- ----------- -------------- -------- -----
9 125970 1003 13 'Vict
8 212569 1001 5 'Trai
7 389123 1007 16 'Engi
2 400314 1002 9 'Pain
4 400339 1008 21 'Spac
1 400345 1001 14 'Buil
5 400455 1005 3 'Tin
6 400876 1004 8 'Sail
3 400999 1009 17 'Slin

10 888652 1006 24 'Tedd
11 400565 1010 10 'Rubi

A new row appears in the productTable with the data from
exdata_table.

Example 2— Insert the Contents of a Cell Array

1 Using the dbtoolboxdemo data source, select and display the data
from the yearlySales table.

curs = exec(conn, 'select * from yearlySales');
curs = fetch(curs);
curs.Data

ans =

5-112

insert

Month salesTotal Revenue
--------- ---------- -------
'January' 130 1200
'Feb' 25 250

2 Store the column names of yearlySales in a cell array.

colnames = {'Month' 'salesTotal' 'Revenue'};

3 Store the data for the insert in a cell array, exdata. The data
contains Month equal to 'March', salesTotal equal to $50, and
Revenue equal to $2000.

exdata = {'March',50,2000};

4 Insert the data into the yearlySales table.

insert(conn, 'yearlySales', colnames, exdata);

5 Display the data from the yearlySales table again.

curs = exec(conn, 'select * from yearlySales');
curs = fetch(curs);
curs.Data

ans =

Month salesTotal Revenue
--------- ---------- -------
'January' 130 1200
'Feb' 25 250
'March' 50 2000

A new row appears in the yearlySales table with the data from
exdata.

See Also commit | fastinsert | querybuilder | rollback

5-113

insert

How To • “Using the Native ODBC Database Connection” on page 2-12

5-114

isconnection

Purpose Detect whether database connections are valid

Syntax a = isconnection(conn)

Description a = isconnection(conn) returns 1 if the database connection conn
is valid, or returns 0 otherwise.

Examples Check if the database connection conn is valid.

a = isconnection(conn)
a =

1

See Also database | isreadonly | ping

5-115

isdriver

Purpose Detect whether driver is valid JDBC driver object

Syntax a = isdriver(d)

Description a = isdriver(d) returns 1 if d is a valid JDBC driver object. It returns
0 otherwise.

Examples Check if d is a valid JDBC driver object.

a = isdriver(d)
a =

1

See Also driver | get | isjdbc | isurl

5-116

isjdbc

Purpose Detect whether driver is JDBC compliant

Syntax a = isjdbc(d)

Description a = isjdbc(d) returns 1 if the driver object d is JDBC compliant. It
returns 0 otherwise.

Examples Verify whether the database driver object d is JDBC compliant.

a = isjdbc(d)
a =

1

See Also driver | get | isdriver | isurl

5-117

isnullcolumn

Purpose Detect whether last record read in resultset is NULL

Syntax a = isnullcolumn(rset)

Description a = isnullcolumn(rset) returns 1 if the last record read in the
resultset rset is NULL. It returns 0 otherwise.

Examples Example 1 — Result Is Not NULL

isnullcolumn returns not null.

1 Run:

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)
ans =

0

2 Verify this result.

curs.Data
ans =

[1400]

Example 2 — Result Is NULL

isnullcolumn returns null.

1 Run:

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)
ans =

1

2 Verify this result.

5-118

isnullcolumn

curs.Data
ans =

[NaN]

See Also get | resultset

5-119

isreadonly

Purpose Detect whether database connection is read only

Syntax a = isreadonly(conn)

Description a = isreadonly(conn) returns 1 if the database connection conn is
read only. It returns 0 otherwise.

Examples Check whether conn is read only.

a = isreadonly(conn)

The result indicates that the database connection conn is read only:

a =
1

Therefore, you cannot run fastinsert, insert, or update functions
on this database.

See Also database | isconnection

5-120

isurl

Purpose Detect whether database URL is valid

Syntax a = isurl(d, 's')

Description a = isurl(d, 's') returns 1 if the database URL s for the driver
object d is valid. It returns 0 otherwise.

The URL s is of the form jdbc:odbc:name or name.

Examples Check whether the database URL
jdbc:odbc:thin:@144.212.123.24:1822: is valid for driver object d.

a = isurl(d, 'jdbc:odbc:thin:@144.212.123.24:1822:')
a =

1

This indicates that the database URL is valid for d.

See Also driver | get | isdriver | isjdbc

5-121

logintimeout

Purpose Set or get time allowed to establish database connection

Syntax timeout = logintimeout('driver', time)
timeout = logintimeout(time)
timeout = logintimeout('driver')
timeout = logintimeout

Description timeout = logintimeout('driver', time) sets the amount of time,
in seconds, for a MATLAB session to connect to a database via a
given JDBC driver. Use logintimeout before running the database
function. If the MATLAB session cannot connect to the database within
the specified time, it stops trying.

timeout = logintimeout(time) sets the amount of time, in seconds,
allowed for a MATLAB session to try to connect to a database via an
ODBC connection. Use logintimeout before running the database
function. If the MATLAB session cannot connect within the allowed
time, it stops trying.

timeout = logintimeout('driver') returns the time, in seconds,
that was previously specified for the JDBC driver. A returned value of
0 means that the timeout value was not previously set. The MATLAB
session stops trying to connect to the database if it is not immediately
successful.

timeout = logintimeout returns the time, in seconds, that you
previously specified for an ODBC connection. A returned value of 0
means that the timeout value was not previously set; the MATLAB
software session stops trying to make a connection if it is not
immediately successful.

Note If you do not specify a value for logintimeout and the MATLAB
session cannot establish a database connection, your MATLAB session
may freeze.

5-122

logintimeout

Note Apple Mac OS platforms do not support logintimeout.

Examples Example 1 — Get Timeout Value for ODBC Connection

View the current connection timeout value.

logintimeout
ans =

0

This indicates that you have not specified a timeout value.

Example 2 — Set Timeout Value for ODBC Connection

Set the timeout value to 5 seconds.

logintimeout(5)
ans =

5

Example 3 — Get and Set Timeout Value for JDBC Connection

1 Check the timeout value for a database connection that is established
using an Oracle JDBC driver.

logintimeout('oracle.jdbc.driver.OracleDriver')
ans =

0

This indicates that the timeout value is currently 0.

2 Set the timeout to 5 seconds.

timeout = ...
logintimeout('oracle.jdbc.driver.OracleDriver', 5)
timeout =

5

5-123

logintimeout

3 Verify the timeout value.

logintimeout('oracle.jdbc.driver.OracleDriver')
ans =

5

See Also database | get | set

5-124

namecolumn

Purpose Map resultset column name to resultset column index

Syntax x = namecolumn(rset, n)

Description x = namecolumn(rset, n) maps a resultset column name n to its
resultset column index. rset is the resultset and n is a string or cell
array of strings containing the column names.

Examples 1 Get the indices for the column names DNAME and LOC resultset object
rset.

x = namecolumn(rset, {'DNAME';'LOC'})
x =

2 3

The results show that DNAME is column 2 and LOC is column 3.

2 Get the index only for the LOC column.

x = namecolumn(rset, 'LOC')

See Also columnnames | resultset

5-125

ping

Purpose Get status information about database connection

Syntax ping(conn)

Description ping(conn) returns status information about the database connection
conn if the connection is open. It returns an error message otherwise.

Examples Example 1 — Get Status Information About ODBC Connection

Check the status of the ODBC connection conn.

ping(conn)
ans =

DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '03.50.0000'

JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'
JDBCDriverVersion: '1.1001 (04.00.4202)'

MaxDatabaseConnections: 64
CurrentUserName: 'admin'

DatabaseURL: 'jdbc:odbc:dbtoolboxdemo'
AutoCommitTransactions: 'True'

Example 2 — Get Status Information About JDBC Connection

Check the status of the JDBC connection conn.

ping(conn)
ans =

DatabaseProductName: 'Oracle'
DatabaseProductVersion: [1x166 char]

JDBCDriverName: 'Oracle JDBC driver'
JDBCDriverVersion: '7.3.4.0.2'

MaxDatabaseConnections: 0
CurrentUserName: 'scott'

DatabaseURL: 'jdbc:oracle:thin: ...
@144.212.123.24:1822:orcl'AutoCommitTransactions:'True'

5-126

ping

Example 3 — Unsuccessful Request for Information About
Connection

In this example, the database connection conn has been terminated
or is not successful.

ping(conn)
Cannot Ping the Database Connection

See Also database | dmd | get | isconnection | set | supports

5-127

primarykeys

Purpose Get primary key information for database table or schema

Syntax k = primarykeys(dbmeta, 'cata', 'sch')
k = primarykeys(dbmeta, 'cata', 'sch', 'tab')

Description k = primarykeys(dbmeta, 'cata', 'sch') returns primary key
information for all tables in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta.

k = primarykeys(dbmeta, 'cata', 'sch', 'tab') returns primary
key information for the table tab, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta.

Examples Get primary key information for the DEPT table:

k = primarykeys(dbmeta,'orcl','SCOTT','DEPT')
k =

'orcl' 'SCOTT' 'DEPT' 'DEPTNO' '1' 'PK_DEPT'

5-128

primarykeys

The results show the primary key information as described in the
following table.

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Column name of primary
key

DEPTNO

5 Sequence number within
primary key

1

6 Primary key name PK_DEPT

See Also crossreference | dmd | exportedkeys | get | importedkeys

5-129

procedurecolumns

Purpose Get stored procedure parameters and result columns of catalogs

Syntax pc = procedurecolumns(dbmeta, 'cata', 'sch')
pc = procedurecolumns(dbmeta, 'cata')

Description pc = procedurecolumns(dbmeta, 'cata', 'sch') returns the stored
procedure parameters and result columns for the schema sch, of the
catalog cata, for the database whose database metadata object is
dbmeta.

pc = procedurecolumns(dbmeta, 'cata') returns stored procedure
parameters and result columns for the catalog cata, for the database
whose database metadata object is dbmeta.

Running the stored procedure generates results. One row is returned
for each column.

Examples Get stored procedure parameters for the schema ORG, in the catalog
tutorial, for the database metadata object dbmeta:

pc = procedurecolumns(dbmeta,'tutorial', 'ORG')
pc =

Columns 1 through 7
[1x19 char] 'ORG' 'display' 'Month' '3' ...
'12' 'TEXT'
[1x19 char] 'ORG' 'display' 'Day' '3' ...
'4' 'INTEGER'

Columns 8 through 13
'50' '50' 'null' 'null' '1' 'null'
'50' '4' 'null' 'null' '1' 'null'

The results show stored procedure parameter and result information.
Because two rows of data are returned, there are two columns of data
in the results. The results show that running the stored procedure
display returns the Month and Day columns.

5-130

procedurecolumns

Following is a full description of the procedurecolumns results for the
first row (Month).

Column Description Value for First Row

1 Catalog 'D:\orgdatabase\orcl'

2 Schema 'ORG'

3 Procedure name 'display'

4 Column/parameter name 'MONTH'

5 Column/parameter type '3'

6 SQL data type '12'

7 SQL data type name 'TEXT'

8 Precision '50'

9 Length '50'

10 Scale 'null'

11 Radix 'null'

12 Nullable '1'

13 Remarks 'null'

For more information about the procedurecolumns results, see the
getProcedureColumns property on the Oracle Java Web site:

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData

See Also dmd | get | procedures

5-131

http://docs.oracle.com/javase/1.4.2/docs/api/java/sql/DatabaseMetaData.html

procedures

Purpose Get stored procedures for catalogs

Syntax p = procedures(dbmeta, 'cata')
p = procedures(dbmeta, 'cata', 'sch')

Description p = procedures(dbmeta, 'cata') returns stored procedures in the
catalog cata for the database whose database metadata object is dbmeta.

p = procedures(dbmeta, 'cata', 'sch') returns the stored
procedures in the schema sch, of the catalog cata, for the database
whose database metadata object is dbmeta.

Stored procedures are SQL statements that are saved with the
database. Use the exec function to run a stored procedure. Specify
the stored procedure as the sqlquery argument instead of explicitly
entering the sqlquery statement as the argument.

Examples Get the names of stored procedures for the catalog DBA for the database
metadata object dbmeta:

p = procedures(dbmeta,'DBA')
p =

'sp_contacts'
'sp_customer_list'
'sp_customer_products'
'sp_product_info'
'sp_retrieve_contacts'
'sp_sales_order'

Execute the stored procedure sp_customer_list for the database
connection conn, and fetch all data:

curs = exec(conn,'sp_customer_list');
curs = fetch(conn)
curs =

Attributes: []
Data: {10x2 cell}

DatabaseObject: [1x1 database]

5-132

procedures

RowLimit: 0
SQLQuery: 'sp_customer_list'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: ...

[1x1 com.mathworks.toolbox.database.fetchTheData]

View the results:

curs.Data
ans =

[101] 'The Power Group'
[102] 'AMF Corp.'
[103] 'Darling Associates'
[104] 'P.S.C.'
[105] 'Amo & Sons'
[106] 'Ralston Inc.'
[107] 'The Home Club'
[108] 'Raleigh Co.'
[109] 'Newton Ent.'
[110] 'The Pep Squad'

See Also dmd | exec | get | procedurecolumns

5-133

querybuilder

Purpose Start SQL query builder GUI to import and export data

Compatibility querybuilder is not recommended. Use dexplore instead.

Syntax querybuilder

Description querybuilder starts Visual Query Builder (VQB), which is the
Database Toolbox GUI.

Tip To populate the VQB Schema and Catalog fields, you must
associate your user name with schemas or catalogs before starting VQB.

Examples For more information on Visual Query Builder, including examples, see
the VQB Help menu or “Getting Started with Visual Query Builder”
on page 3-2.

5-134

querytimeout

Purpose Get time specified for SQL queries to succeed

Syntax timeout = querytimeout(curs)

Description timeout = querytimeout(curs) returns the amount of time, in
seconds, allowed for SQL queries of the open cursor curs to succeed. If
a given query cannot complete in the specified time, the toolbox stops
trying to perform the query.

The database administrator defines timeout values. If the timeout
value is zero, queries must complete immediately.

Examples Get the current database timeout setting for curs.

querytimeout(curs)
ans =

10

Limitations • If a given database does not have a database timeout feature, it
returns the following:

[Driver]Driver not capable

• ODBC drivers for Microsoft Access and Oracle do not support
querytimeout.

See Also exec

5-135

register

Purpose Load database driver

Syntax register(d)

Description register(d) loads the database driver object d. Use unregister to
unload the driver.

Although database automatically loads a driver, register allows you
to use get to view properties of the driver before connecting to the
database. The register function also allows you to run drivermanager
with set and get on properties for loaded drivers.

Examples 1 register(d) loads the database driver object d.

2 get(d) returns properties of the driver object.

See Also driver | drivermanager | get | set | unregister

5-136

resultset

Purpose Construct resultset object

Syntax rset = resultset(curs)

Description rset = resultset(curs) creates a resultset object rset for the cursor
curs. To get properties of rset, create a resultset metadata object using
rsmd, or make calls to rset using applications based on Oracle Java.

Run clearwarnings, isnullcolumn, and namecolumn on rset. Use
close to close the resultset, which frees up resources.

Examples Construct a resultset object rset.

rset = resultset(curs)
rset =

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

See Also clearwarnings | close | fetch | exec | get | isnullcolumn |
namecolumn | rsmd

5-137

rollback

Purpose Undo database changes

Syntax rollback(conn)

Description rollback(conn) reverses changes made to a database using
fastinsert, insert, or update via the database connection conn. The
rollback function reverses all changes made since the last commit or
rollback operation. To use rollback, the AutoCommit flag for conn
must be off.

Note rollback does not roll back data in MySQL databases if the
database engine is not InnoDB.

Examples 1 Ensure that the AutoCommit flag for connection conn is off by
running:

get(conn,'AutoCommit')
ans =
off

2 Insert data contained in exdata into the columns DEPTNO, DNAME, and
LOC, in the table DEPT, for the data source conn.

fastinsert(conn, 'DEPT', ...
{'DEPTNO';'DNAME';'LOC'}, exdata)

3 Roll back the data that you inserted into the database by running:

rollback(conn)

The data in exdata is removed from the database. The database now
contains the data it had before you ran the fastinsert function.

See Also commit | database | exec | fastinsert | get | insert | update

5-138

rows

Purpose Return number of rows in fetched data set

Syntax numrows = rows(curs)

Description numrows = rows(curs) returns the number of rows in the fetched data
set curs, where curs has been generated by the fetch function.

Examples There are four rows in the fetched data set curs.

numrows = rows(curs)

numrows =
4

To see the four rows of data in curs, run:

curs.Data
ans =

'Germany'
'Mexico'
'France'
'Canada'

See Also cols | fetch | get | rsmd

5-139

rsmd

Purpose Construct resultset metadata object

Syntax rsmeta = rsmd(rset)

Description rsmeta = rsmd(rset) creates a resultset metadata object rsmeta, for
the resultset object rset. Get properties of rsmeta using get or make
calls to rsmeta using applications that are based on Oracle Java.

Examples Create a resultset metadata object rsmeta.

rsmeta=rsmd(rset)
rsmeta =

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSetMetaData]

Use v = get(rsmeta) and v.property to view properties of the
resultset metadata object.

See Also exec | get | resultset

5-140

runsqlscript

Purpose Run SQL script on a database

Syntax results = runsqlscript(connect,sqlfilename)
results = runsqlscript(connect,sqlfilename,Name,Value)

Description results = runsqlscript(connect,sqlfilename) runs the SQL
commands in the file sqlfilename on the connected database, and
returns a cursor array.

results = runsqlscript(connect,sqlfilename,Name,Value) uses
additional options specified by one or more Name,Value pairs.

Input
Arguments

connect - Database connection
connection object

Database connection, specified as a connection object.

sqlfilename - File name of SQL commands
string

File name of SQL commands to run, specified as a string. The file
must be a text file, and can contain comments along with SQL queries.
Single line comments must start with --. Multiline comments should
be wrapped in /*...*/.

Example: 'C:\work\sql_file.sql'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'RowInc',3,'QTimeOut',60 specifies that results be
returned in increments of three rows and the query time out in 60
seconds

5-141

runsqlscript

’rowInc’ - Row limit
0 implies all rows (default) | positive scalar

Row limit indicating the number of rows to retrieve at a time, specified
as the comma-separated pair consisting of 'rowInc' and a positive
scalar value. Use rowInc when importing large amounts of data.
Retrieving data in increments helps reduce overall retrieval time.

Example: 'rowInc',5

Data Types
double

’QTimeOut’ - Query time out
0 implies unlimited time (default) | positive scalar

Query time out (in seconds), specified as the comma-separated pair
consisting of 'QTimeOut' and a positive scalar value.

Example: 'QTimeOut',180

Data Types
double

Output
Arguments

results - Query results
cursor array

Query results from executing the SQL commands, returned as a cursor
array. The number of elements in results is equal to the number of
batches in the file sqlfilename.

results(M) contains the results from executing the Mth SQL batch
in the SQL script. If the batch returns a resultset, it is stored in
results(M).Data.

Limitations • Use runsqlscript to import data into MATLAB, especially if the
data is the result of long and complex SQL queries that are difficult
to convert into MATLAB strings. runsqlscript is not designed to
handle SQL scripts containing continuous PL/SQL blocks with BEGIN
and END, such as stored procedure definitions, trigger definitions, and
so on. However, table definitions do work.

5-142

runsqlscript

• An SQL script containing any of the following can produce unexpected
results:

- Apostrophes that are not escaped (including those in comments).
For example, the string 'Here's the code' should be written
as 'Here''s the code'.

- Nested comments.

Examples Run SQL Script

Run SQL commands from a file on a connected data source.

To run this example, set up the data source, dbtoolboxdemo,
by following the steps in “Set Up the dbtoolboxdemo Data
Source”. To get the file of SQL commands, navigate to
\toolbox\database\dbdemos\compare_sales.sql in your MATLAB
root folder, or copy and paste the path into your current working
directory.

Create the connection object to the data source, dbtoolboxdemo.

conn = database('dbtoolboxdemo','','');

User names and passwords are not required for this connection.

Run the SQL script, compare_sales.sql.

results = runsqlscript(conn,'compare_sales.sql')

results =

1x2 array of cursor objects

The SQL script has two queries, and returns two results when executed.

Display the results for the second query.

results(2)

ans =

5-143

runsqlscript

Attributes: []

Data: {4x6 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: [1x309 char]

Message: ''

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

Display the resultset returned for the second query.

results(2).Data

ans =

'Painting Set' 'Terrific Toys' 'London' [3000] [2400] [1800]

'Victorian Doll' 'Wacky Widgets' 'Adelaide' [1400] [1100] [981]

'Sail Boat' 'Incredible Machines' 'Dublin' [3000] [2400] [1500]

'Slinky' 'Doll's Galore' 'London' [3000] [1500] [1000]

Get the column names for the data returned by the second query.

names = columnnames(results(2))

names =

'productDescription','supplierName','city','Jan_Sales','Feb_Sales','Mar_Sales'

Close the cursor array and connection.

close(results);
close(conn);

5-144

runsqlscript

Run SQL Script in Row Increments

Run SQL commands from a file on a connected data source in two-row
increments.

To run this example, set up the data source, dbtoolboxdemo,
by following the steps in “Set Up the dbtoolboxdemo Data
Source”. To get the file of SQL commands, navigate to
\toolbox\database\dbdemos\compare_sales.sql in your MATLAB
root folder, or copy and paste the path into your current working
directory.

Create the connection object to the data source, dbtoolboxdemo.

conn = database('dbtoolboxdemo','','');

User names and passwords are not required for this connection.

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

Run the SQL script, compare_sales.sql, specifying two-row
increments.

results = runsqlscript(conn,'compare_sales.sql','rowInc',2)

results =

1x2 array of cursor objects

The SQL script has two queries, and returns two results when executed.

Display the resultset returned for the second query.

results(2).Data

ans =

'Painting Set' 'Terrific Toys' 'London' [3000] [2400] [1800]

'Victorian Doll' 'Wacky Widgets' 'Adelaide' [1400] [1100] [981]

5-145

runsqlscript

Only the first two rows of the results are returned.

Fetch the next increment of two rows.

res2 = fetch(results(2),2);
res2.Data

ans =

'Sail Boat' 'Incredible Machines' 'Dublin' [3000] [2400] [1500]

'Slinky' 'Doll's Galore' 'London' [3000] [1500] [1000]

Close the cursor arrays and connection.

close(results);
close(res2);
close(conn);

Run SQL Script to Fetch Data in Batches

Run SQL commands from a file on a connected data source with
automated batching. Use this method to avoid Java heap memory
issues when the SQL script returns a large amount of data.

To run this example, set up the data source, dbtoolboxdemo,
by following the steps in “Set Up the dbtoolboxdemo Data
Source”. To get the file of SQL commands, navigate to
\toolbox\database\dbdemos\compare_sales.sql in your MATLAB
root folder, or copy and paste the path into your current working
directory.

Create the connection object to the data source, dbtoolboxdemo.

conn = database('dbtoolboxdemo','','');

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

Turn on batching for fetch.

5-146

runsqlscript

setdbprefs('FetchInBatches', 'yes')

Set appropriate batch size depending on the size of the resultset you
expect to fetch. For example, if you expect about a 100,000 rows in the
output, a batch size of 10,000 is a good starting point. The larger the
FetchBatchSize value, the fewer trips between Java and MATLAB, and
the memory consumption is greater for each batch. The optimal value
for FetchBatchSize is decided based on several factors like the size per
row being retrieved, the Java heap memory value, the driver’s default
fetch size, and system architecture, and hence, may vary from site to
site. For more information on estimating a value for FetchBatchSize,
see “Preference Settings for Large Data Import” on page 3-10.

setdbprefs('FetchBatchSize', '2')

Run the SQL script, compare_sales.sql.

results = runsqlscript(conn, 'compare_sales.sql')

results =

1x2 array of cursor objects

Batching occurs internally within fetch, in that it fetches in increments
of two rows at a time. The batching preferences are applied to all the
queries in the SQL script.

Tips • Any values assigned to rowInc or QTimeOut apply to all queries in
the SQL script. For example, if rowInc is set to 5, then all queries in
the script return at most five rows in their respective resultsets.

• You can set preferences for the resultsets using setdbprefs.
Preference settings apply to all queries in the SQL script. For
example, if the DataReturnFormat is set to numeric, all the
resultsets return as numeric matrices.

5-147

runsqlscript

Definitions Batch

One or more SQL statements terminated by either a semicolon or the
keyword GO.

See Also resultset | setdbprefs | fetch

Related
Examples

• “Set Up the dbtoolboxdemo Data Source”

Concepts • “Preference Settings for Large Data Import” on page 3-10

5-148

runstoredprocedure

Purpose Call stored procedure with input and output parameters

Syntax results = runstoredprocedure(conn, sp_name, parms_in,
types_out)

Description results = runstoredprocedure(conn, sp_name, parms_in,
types_out) calls a stored procedure with specified input parameters
and returns output parameters, for the database connection handle
conn . sp_name is the stored procedure to run, parms_in is a cell
array containing the input parameters for the stored procedure, and
types_out is the list of data types for the output parameters.

Use runstoredprocedure to return the value of a variable to a
MATLAB variable, which you cannot do when running a stored
procedure via exec. Running a stored procedure via exec returns
resultsets but cannot return output parameters.

Examples These examples illustrate how runstoredprocedure differs from
running stored procedures via exec.

1 Run a stored procedure that has no input or output parameters:

x = runstoredprocedure(c,'myprocnoparams')

2 Run a stored procedure given input parameters 2500 and 'Jones'
with no output parameters.

x = runstoredprocedure(c,'myprocinonly',{2500,'Jones'})

3 Run the stored procedure myproc given input parameters
2500 and 'Jones'. Return an output parameter of type
java.sql.Types.NUMERIC, which could be any numeric Oracle Java
data type. The output parameter x is the value of a database variable
n. The stored procedure myproc creates this variable, given the input
values 2500 and 'Jones'. For example, myproc computes n, the
number of days when Jones is 2500. It then returns the value of
n to x.

5-149

runstoredprocedure

x = runstoredprocedure(c,'myproc',{2500,'Jones'},{java.sql.Types.NUMERIC})

See Also fetch | exec

5-150

set

Purpose Set properties for database, cursor, or drivermanager object

Syntax set(object, 'property', value)
set(object)

Description set(object, 'property', value) sets the value of property to value
for the specified object.

set(object) displays all properties for object.

Allowable values for object are:

• “Database Connection Objects” on page 5-152, created using
database

• “Cursor Objects” on page 5-153, created using exec or fetch

• “Drivermanager Objects” on page 5-153, created using
drivermanager

You cannot set all of these properties for all databases. You receive an
error message when you try to set a property that the database does
not support.

5-151

set

Database Connection Objects

The allowable values for property and value for a database connection
object appear in the following table.

Property Value Description

'on' Database data is written
and automatically committed
when you run fastinsert,
insert, or exec. You cannot
use rollback to reverse this
process.

'AutoCommit'

'off' Database data is not
committed automatically
when you run fastinsert,
insert, or update. Use
rollback to reverse this
process. When you are sure
that your data is correct, use
the commit function to commit
it to the database.

0 Not read only; that is,
writable

'ReadOnly'

1 Read only

'TransactionIsolation' positive
integer

Current transaction isolation
level

Note For some databases, if you insert data and then close the
database connection without committing the data to the database, the
data gets committed automatically. Your database administrator can
tell you whether your database behaves this way.

5-152

set

Cursor Objects

The allowable property and value for a cursor object appear in the
following table.

Property Value Description

'RowLimit' positive
integer

Sets the RowLimit for fetch.
Specify this property instead of
passing RowLimit as an argument
to the fetch function. When
you define RowLimit for fetch
by using set, fetch behaves
differently depending on what
type of database you are using.

Drivermanager Objects

The allowable property and value for a drivermanager object appear
in the following table.

Property Value Description

'LoginTimeout' positive integer Sets the logintimeout
value for all loaded
database drivers.

For command-line help on set, use the overloaded methods:

help cursor/set
help database/set
help drivermanager/set

Examples Example 1 — Set RowLimit for Cursor

This example does the following:

• Establishes a JDBC connection to a data source.

• Runs fetch to retrieve data from the table EMP.

5-153

set

• Sets RowLimit to 5.

conn=database('orcl','scott','tiger',...

'oracle.jdbc.driver.OracleDriver',...

'jdbc:oracle:thin:@144.212.123.24:1822:');

curs=exec(conn,'select * from EMP');

set(curs,'RowLimit',5)

curs=fetch(curs)

curs =

Attributes: []

Data: {5x8 cell}

DatabaseObject: [1x1 database]

RowLimit: 5

SQLQuery: 'select * from EMP'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 oracle.jdbc.driver.OracleResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 oracle.jdbc.driver.OracleStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The RowLimit property of curs is 5 and the Data property is 5x8 cell,
indicating that fetch returned five rows of data.

In this example, RowLimit limits the maximum number of rows you can
retrieve. Therefore, rerunning the fetch function returns no data.

5-154

set

Example 2 — Set the AutoCommit Flag to On

This example shows what happens when you run a database update
function on a database whose AutoCommit flag is set to on.

1 Determine the status of the AutoCommit flag for the database
connection conn.

get(conn, 'AutoCommit')

ans =
off

The flag is off.

2 Set the flag status to on and verify its value.

set(conn, 'AutoCommit', 'on');
get(conn, 'AutoCommit')

ans =
on

3 Insert a cell array exdata into column names colnames in the table
Growth.

fastinsert(conn, 'Growth', colnames, exdata)

The data is inserted and committed to the database.

5-155

set

Example 3 — Set the AutoCommit Flag to Off and Commit
Data

This example shows the results of running fastinsert and commit to
insert and commit data into a database whose AutoCommit flag is off.

1 First set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off');

2 Insert a cell array exdata into the column names colnames in the
table Avg_Freight_Cost.

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

3 Commit the data to the database.

commit(conn)

Example 4 — Set the AutoCommit Flag to Off and Roll Back
Data

This example runs update to insert data into a database whose
AutoCommit flag is off. It then uses rollback to roll back the data.

1 Set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off');

2 Update the data in colnames in the Avg_Freight_Weight table, for
the record selected by whereclause, with data from the cell array
exdata.

update(conn, 'Avg_Freight_Weight', colnames, exdata,
whereclause)

3 Roll back the data.

rollback(conn)

5-156

set

The data in the table is now as it was before you ran update.

Example 5 — Set the LoginTimeout for a Drivermanager
Object

1 Create a drivermanager object dm and set its LoginTimeout value to
3 seconds.

dm = drivermanager;
set(dm,'LoginTimeout',3);

2 Verify this result.

logintimeout
ans =

3

See Also fetch | database | drivermanager | exec | fastinsert | get |
insert | logintimeout | ping | update

5-157

setdbprefs

Purpose Set preferences for retrieval format, errors, NULLs, and more

Alternative • From the Database Explorer Toolstrip, select Preferences to open
the Database Toolbox Preferences dialog box.

Syntax setdbprefs
s = setdbprefs
setdbprefs('property')
setdbprefs('property', 'value')
setdbprefs({'property1'; ...}, {'value1'; ...})
setdbprefs(s)

Description setdbprefs returns current values for database preferences.

s = setdbprefs returns current values for database preferences to
the structure s.

setdbprefs('property') returns the current value for the specified
property.

setdbprefs('property', 'value') sets the specified property to
value.

setdbprefs({'property1'; ...}, {'value1'; ...}) sets properties
starting with property1 to values starting with value1.

setdbprefs(s) sets preferences specified in the structure s to values
that you specify.

Allowable properties appear in the following tables:

• DataReturnFormat and ErrorHandling Properties and Values for
setdbprefs on page 5-159

• Null Data Handling Properties and Values for setdbprefs on page
5-160

• Other Properties and Values for setdbprefs (Not Accessible via Query
> Preferences) on page 5-162

5-158

setdbprefs

DataReturnFormat and ErrorHandling Properties and Values for setdbprefs

Property Allowable Values Description

'cellarray'
(default), 'table',
'dataset',
'numeric', or
'structure'

Format for data to import into the MATLAB
workspace. Set the format based on the
type of data being retrieved, memory
considerations, and your preferred method
of working with retrieved data.

'cellarray'
(default)

Import nonnumeric data into MATLAB cell
arrays.

'table' Import data into MATLAB table objects.
Use for all data types. Facilitates working
with returned columns.

'dataset' Import data into MATLAB dataset objects.
Use for all data types. Facilitates working
with returned columns. This option requires
Statistics Toolbox.

'numeric' Import data into MATLAB matrix of
doubles. Nonnumeric data types are
considered NULL and appear as specified in
the NullNumberRead property. Use only
when data to retrieve is in numeric format,
or when nonnumeric data to retrieve is not
relevant.

'DataReturnFormat'

'structure' Import data into a MATLAB structure. Use
for all data types. Facilitates working with
returned columns.

5-159

setdbprefs

DataReturnFormat and ErrorHandling Properties and Values for setdbprefs
(Continued)

Property Allowable Values Description

'store' (default),
'report', or
'empty'

Specify how to handle errors when importing
data. Set this parameter before you run
exec.

'store' (default) Errors from running database are stored in
the Message field of the returned connection
object. Errors from running exec are stored
in the Message field of the returned cursor
object.

'report' Errors from running database or exec
appear immediately in the MATLAB
Command Window.

'ErrorHandling'

'empty' Errors from running database are stored in
the Message field of the returned connection
object. Errors from running exec are stored
in the Message field of the returned cursor
object. Objects that cannot be created are
returned as empty handles ([]).

Null Data Handling Properties and Values for setdbprefs

Property Allowable Values Description

'NullNumberRead' User-specified, for
example, '0'

Specify how NULL numbers appear after being
imported from a database into the MATLAB
workspace. NaN is the default value. String
values such as 'NULL' cannot be set if

5-160

setdbprefs

Null Data Handling Properties and Values for setdbprefs (Continued)

Property Allowable Values Description

'DataReturnFormat' is set to 'numeric'.
Set this parameter before running fetch.

'NullNumberWrite' User-specified, for
example, 'NaN'
(default)

Numbers in the specified format, for
example, NaN appears as NULL after being
exported from the MATLAB workspace to a
database.

'NullStringRead' User-specified, for
example, 'null'
(default)

Specify how NULL strings appear after being
imported from a database into the MATLAB
workspace. Set this parameter before
running fetch.

'NullStringWrite' User-specified, for
example, 'null'
(default)

Strings in the specified format, for example,
'NULL', appear as NULL after being exported
from the MATLAB workspace to a database.

5-161

setdbprefs

Other Properties and Values for setdbprefs (Not Accessible via Query >
Preferences)

Property
Allowable
Values Description

'JDBCDataSourceFile' User-specified,
for example,
'D:/file.mat'

Path to MAT-file containing JDBC
data sources. For more information,
see “Accessing Existing JDBC Data
Sources” on page 2-4.

'UseRegistryForSources' 'yes' (default)
or 'no'

When set to yes, VQB searches the
Microsoft Windows registry for ODBC
data sources that are not uncovered in
the system ODBC.INI file. The following
message might appear: Registry
editing has been disabled by your
administrator. This message is
harmless and can safely be ignored.

'TempDirForRegistryOutput' User-specified,
for example,
'D:/work'

Folder where VQB writes ODBC registry
settings when you run getdatasources.
Use when you add data sources and
do not have write access to the
MATLAB Current Folder. The default
is the Windows temporary folder,
which is returned by the command
getenv('temp')).

If you specify a folder to which you do
not have write access or which does not
exist, the following error appears:

Cannot export
<folder-name>\ODBC.INI:
Error opening the file.
There may be a disk
or file system error.

5-162

setdbprefs

Other Properties and Values for setdbprefs (Not Accessible via Query >
Preferences) (Continued)

Property
Allowable
Values Description

'DefaultRowPreFetch' User-specified
numeric value,
default value is
'10000'

Number of rows fetched from the
Database server at a time for any query.
The higher the number, the fewer the
number of trips to the server. This
setting is applicable only for databases
that allow this number to be set, e.g,
Oracle.

'FetchInBatches' 'yes' or 'no'
(default)

Automates fetching in batches for large
data sets where you might run into
Java heap memory errors in MATLAB.
When the value is 'yes', fetch and
runsqlscript import the data in
batches in size of 'FetchBatchSize'.
For an example, see fetch.

'FetchBatchSize' User-specified
numeric value,
default value
is '1000'
Supported
values are
from 1000 to
1000000.

Automates fetching in batches for large
data sets when used in conjunction with
'FetchInBatches'. When the value
of 'FetchInBatches' is 'yes', fetch
and runsqlscript import the data in
batches in size of 'FetchBatchSize'.

For an example, see fetch. For
more information on estimating
a 'FetchBatchSize' value, see
“Preference Settings for Large Data
Import” on page 3-10.

5-163

setdbprefs

Tips • Preferences are retained across MATLAB sessions.

• Regardless of the value of 'NullNumberWrite', a NULL value is
always written to the database when you input [] or NaN for a
numeric data type.

• For string inputs, a NULL value is written to the database only when
the input value matches the value of 'NullStringWrite'.

Examples Example 1 — Display Current Values

Run setdbprefs.

setdbprefs

DataReturnFormat: 'cellarray'
ErrorHandling: 'store'

NullNumberRead: '0'
NullNumberWrite: 'NaN'
NullStringRead: 'null'

NullStringWrite: 'null'
JDBCDataSourceFile: 'C:\hold_x\jdbcConfig_test.mat'

UseRegistryForSources: 'yes'
TempDirForRegistryOutput: 'C:\Work'

DefaultRowPreFetch: '10000'
FetchInBatches: 'no'
FetchBatchSize: '1000'

These values show that:

• Data is imported from databases into MATLAB cell arrays.

• Errors that occur during a database connection or SQL query attempt
are stored in the Message field of the connection or cursor data object.

• Each NULL number in the database is read into the MATLAB
workspace as NaN. Each NaN in the MATLAB workspace is exported
to the database as NULL. Each NULL string in the database is read
into the MATLAB workspace as 'null'. Each 'null' string in the
MATLAB workspace is exported to the database as a NULL string.

5-164

setdbprefs

• A MAT-file that specifies the JDBC source file has not been created.

• Visual Query Builder looks in the Windows system registry for data
sources that do not appear in the ODBC.INI file.

• No temporary folder for registry settings has been specified.

• The default number of rows fetched from the Database server at
a time for any query is 10,000.

Example 2 — Change a Preference

1 Run setdbprefs ('NullNumberRead').

setdbprefs ('NullNumberRead')
NullNumberRead: 'NaN'

Each NULL number in the database is read into the MATLAB
workspace as NaN.

2 Change the value of this preference to 0.

setdbprefs ('NullNumberRead', '0')

Each NULL number in the database is read into the MATLAB
workspace as 0.

Example 3 — Change the DataReturnFormat Preference

1 Specify that database data be imported into MATLAB cell arrays.

setdbprefs ('DataReturnFormat','cellarray')

2 Import data into the MATLAB workspace.

conn = database('dbtoolboxdemo', '', '');
curs=exec(conn, ...
'select productnumber,productdescription from producttable');
curs=fetch(curs,3);
curs.Data

5-165

setdbprefs

ans =

[9] 'Victorian Doll'
[8] 'Train Set'
[7] 'Engine Kit'

Alternatively, you can use the native ODBC interface for an ODBC
connection. For more information, see database.

3 Change the data return format from cellarray to numeric.

setdbprefs ('DataReturnFormat','numeric')

4 Perform the same import operation as you ran in the cell array
example. Note the format of the returned data.

curs.Data

ans =

9 NaN
8 NaN
7 NaN

In the database, the values for productDescription are character
strings, as seen in the previous example when DataReturnFormat
was set to cellarray. Therefore, the productDescription values
cannot be read when they are imported into the MATLAB workspace
using the numeric format. Therefore, the MATLAB software treats
them as NULL numbers and assigns them the current value for the
NullNumberRead property of setdbprefs, NaN.

5 Change the data return format to structure.

setdbprefs ('DataReturnFormat','structure')

6 Perform the same import operation as you ran in the cell array
example.

5-166

setdbprefs

curs.Data

ans =

productnumber: [3x1 double]
productdescription: {3x1 cell}

7 View the contents of the structure to see the data.

curs.Data.productdescription

ans =

'Victorian Doll'
'Train Set'
'Engine Kit'

curs.Data.productnumber

ans =

9
8
7

Example 4 — Change the Write Format for NULL Numbers

1 Specify NaN for the NullNumberWrite format.

setdbprefs('NullNumberWrite', 'NaN')

colnames = {'productNumber' ,'Quantity', 'Price'}

Numbers represented as NaN in the MATLAB workspace are exported
to databases as NULL.

5-167

setdbprefs

For example, the variable ex_data contains a NaN.

ex_data = {24, NaN, 30.00}

2 Insert ex_data into a database using fastinsert. The NaN data is
exported into the database as NULL.

fastinsert (conn, 'inventoryTable', colnames, ex_data)

Example 5 — Specify Error Handling Settings

1 Specify the store format for the ErrorHandling preference.

setdbprefs ('ErrorHandling','store')

Errors generated from running database or exec are stored in the
Message field of the returned connection or cursor object.

2 Try to fetch data from a closed cursor.

conn=database('dbtoolboxdemo', '', '');

curs=exec(conn, 'select productdescription from producttable');

close(curs)

curs=fetch(curs,3);

curs =

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select productdescription from producttable'

Message: 'Invalid fetch cursor.'

Type: 'Database Cursor Object'

ResultSet: 0

Cursor: 0

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

5-168

setdbprefs

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The error generated by this operation appears in the Message field.

3 To specify the report format for the ErrorHandling preference, run:

setdbprefs ('ErrorHandling','report')

Errors generated by running database or exec appear immediately
in the Command Window.

4 Try to fetch data from a closed cursor.

conn = database('dbtoolboxdemo', '', '');
curs=exec(conn, 'select productdescription from producttable');
close(curs)
curs=fetch(curs,3);

Error using cursor/fetch>errorhandling (line 491)
Invalid fetch cursor.

Error in cursor/fetch (line 460)
errorhandling(outCursor.Message);

The error generated by this operation appears immediately in the
Command Window.

5 Specify the empty format for the ErrorHandling preference.

setdbprefs ('ErrorHandling','empty')

Errors generated while running database or exec are stored in the
Message field of the returned connection or cursor object. In addition,
objects that cannot be created are returned as empty handles, [].

6 Try to fetch data from a closed cursor.

conn = database('dbtoolboxdemo', '', '');

curs=exec(conn, 'select productdescription from producttable');

5-169

setdbprefs

close(curs)

curs=fetch(curs,3);

curs =

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select productdescription from producttable'

Message: 'Invalid fetch cursor.'

Type: 'Database Cursor Object'

ResultSet: 0

Cursor: 0

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The error appears in the cursor object Message field. Furthermore,
the Attributes field contains empty handles because no attributes
could be created.

Example 6 — Change Multiple Settings

Specify that NULL strings are read from the database into a MATLAB
matrix of doubles as 'NaN':

setdbprefs({'NullStringRead';'DataReturnFormat'},...
{'NaN';'numeric'})

See “Example 8 — Assign Values to a Structure” on page 5-171 for more
information on another way to change multiple settings.

Example 7 — Specify JDBC Data Sources for Use by VQB

Instruct VQB to connect to the database using the data sources specified
in the file myjdbcdatsources.mat.

setdbprefs('JDBCDataSourceFile',...
'D:/Work/myjdbcdatasources.mat')

5-170

setdbprefs

Example 8 — Assign Values to a Structure

1 Assign values for preferences to fields in the structure s.

s.DataReturnFormat = 'numeric';
s.NullNumberRead = '0';
s.TempDirForRegistryOutput = 'C:\Work'
s =

DataReturnFormat: 'numeric'
NullNumberRead: '0'

TempDirForRegistryOutput: 'C:\Work'

2 Set preferences using the values in s:

setdbprefs(s)

3 Run setdbprefs to check your preferences settings:

setdbprefs
DataReturnFormat: 'numeric'

ErrorHandling: 'store'
NullNumberRead: '0'

NullNumberWrite: 'NaN'
NullStringRead: 'null'

NullStringWrite: 'null'
JDBCDataSourceFile: ''

UseRegistryForSources: 'yes'
TempDirForRegistryOutput: 'C:\Work'

DefaultRowPreFetch: '10000'
FetchInBatches: 'no'
FetchBatchSize: '1000'

Example 9 — Return Values to a Structure

1 Assign values for all preferences to s by running:

s = setdbprefs
s =

5-171

setdbprefs

DataReturnFormat: 'cellarray'
ErrorHandling: 'store'

NullNumberRead: 'NaN'
NullNumberWrite: 'NaN'
NullStringRead: 'null'

NullStringWrite: 'null'
JDBCDataSourceFile: ''

UseRegistryForSources: 'yes'
TempDirForRegistryOutput: 'C:\Work'

DefaultRowPreFetch: '10000'
FetchInBatches: 'no'
FetchBatchSize: '1000'

2 Use the MATLAB tab completion feature when obtaining the value
for a preference. For example, enter:

s.U

3 Press the Tab key, and then Enter. MATLAB completes the field
and displays the value.

s.UseRegistryForSources

ans =

yes

Example 10 — Save Preferences

You can save your preferences to a MAT-file to use them in future
MATLAB sessions. For example, say that you need to reuse preferences
that you set for the Seasonal Smoothing project. Assign the preferences
to the variable SeasonalSmoothing and save them to a MAT-file
SeasonalSmoothingPrefs in your current folder:

SeasonalSmoothing = setdbprefs;
save SeasonalSmoothingPrefs.mat SeasonalSmoothing

Later, load the data and restore the preferences:

5-172

setdbprefs

load SeasonalSmoothingPrefs.mat
setdbprefs(SeasonalSmoothing);

See Also clear | fetch | getdatasources

Related
Examples

• “Preference Settings for Large Data Import” on page 3-10
• “Working with Preferences” on page 3-6

5-173

sql2native

Purpose Convert JDBC SQL grammar to SQL grammar native to system

Syntax n = sql2native(conn, 'sqlquery')

Description n = sql2native(conn, 'sqlquery') converts the SQL statement
string sqlquery from JDBC SQL grammar into the database system’s
native SQL grammar for the connection conn. The native SQL
statement is assigned to n.

5-174

supports

Purpose Detect whether property is supported by database metadata object

Syntax a = supports(dbmeta)
a = supports(dbmeta, 'property')
a.property

Description a = supports(dbmeta) returns a structure that contains the
properties of dbmeta and its property values, 1 or 0. A value of 1
indicates that the property is supported, and 0 indicates that the
property is not supported.

a = supports(dbmeta, 'property') returns 1 or 0 for the property
field of dbmeta. A value of 1 indicates that the property is supported,
and 0 indicates that the property is not supported.

a.property returns the value of property after you have created a
using the supports function.

Examples 1 Check if dbmeta supports group-by clauses.

a = supports(dbmeta, 'GroupBy')
a =

1

2 View the value of all properties of dbmeta.

a = supports(dbmeta)

The returned result is a list of properties and their values.

3 See the value of the GroupBy property by running:

a.GroupBy
a =

1

See Also database | dmd | get | ping

5-175

tableprivileges

Purpose Return database table privileges

Syntax tp = tableprivileges(dbmeta, 'cata')
tp = tableprivileges(dbmeta, 'cata', 'sch')
tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab')

Description tp = tableprivileges(dbmeta, 'cata') returns a list of table
privileges for all tables in the catalog cata for the database whose
database metadata object is dbmeta resulting from a database
connection object.

tp = tableprivileges(dbmeta, 'cata', 'sch') returns a list of
table privileges for all tables in the schema sch, of the catalog cata,
for the database whose database metadata object is dbmeta resulting
from a database connection object.

tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab') returns a
list of privileges for the table tab, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta
resulting from a database connection object.

Examples Get table privileges for the builds table in the schema geck for the
catalog msdb, for the database metadata object dbmeta.

tp = tableprivileges(dbmeta,'msdb','geck', 'builds')
tp =

'DELETE' 'INSERT' 'REFERENCES' ...
'SELECT' 'UPDATE'

See Also dmd | get | tables

5-176

tables

Purpose Return database table names

Syntax t = tables(dbmeta, 'cata')
t = tables(dbmeta, 'cata', 'sch')

Description t = tables(dbmeta, 'cata') returns a list of tables and table types
in the catalog cata for the database whose database metadata object is
dbmeta resulting from a database connection object.

t = tables(dbmeta, 'cata', 'sch') returns a list of tables and
table types in the schema sch, of the catalog cata, for the database
whose database metadata object is dbmeta resulting from a database
connection object.

Tip For command-line help on tables, use the overloaded method:

help dmd/tables

Examples Get the table names and types for the schema SCOTT in the catalog
orcl, for the database metadata object dbmeta.

t = tables(dbmeta,'orcl', 'SCOTT')
t =

'BONUS' 'TABLE'
'DEPT' 'TABLE'
'EMP' 'TABLE'
'SALGRADE' 'TABLE'
'TRIAL' 'TABLE'

See Also attr | bestrowid | dmd | get | indexinfo | tableprivileges

5-177

unregister

Purpose Unload database driver

Syntax unregister(d)

Description unregister(d) unloads the database driver object d, freeing up system
resources. If you do not unload a registered driver, it automatically
unloads when you end your MATLAB session.

Examples unregister(d) unloads the database driver object d.

See Also register

5-178

update

Purpose Replace data in database table with MATLAB data

Syntax update(conn, 'tab', colnames, exdata, 'whereclause')

update(conn, 'tab', colnames, ...

{datA,datAA, ...; datB,datBB, ...; datn, datNN}, ...

{'where col1 = val1'; 'where col2 = val2'; ... 'where coln = valn'})

Description update(conn, 'tab', colnames, exdata, 'whereclause') exports
the MATLAB variable exdata in its current format into the database
table tab using the database connection conn. exdata can be a cell
array, numeric matrix, or structure. Existing records in the database
table are replaced as specified by the SQL whereclause command.

Specify column names for tab as strings in the MATLAB cell array
colnames. If exdata is a structure, field names in the structure must
match field names in colnames.

The status of the AutoCommit flag determines whether update
automatically commits the data to the database. View the AutoCommit
flag status for the connection using get and change it using set.
Commit the data by running commit or a SQL commit statement via
the exec function. Roll back the data by running rollback or a SQL
rollback statement via the exec function.

To add new rows instead of replacing existing data, use fastinsert.

update(conn, 'tab', colnames, {datA, datAA, ...; datB,
datBB, ...; datn,datNN}, {'where col1 = val1'; 'where col2
= val2'; ... 'where coln = valn'}) exports multiple records for
n where clauses. The number of records in exdata must equal n.

Tips • The order of records in your database is not constant. Use values of
column names to identify records.

• An error like the following may appear if your database table is
open in edit mode:

[Vendor][ODBC Product Driver] The database engine could
not lock table 'TableName' because it is already in use

5-179

update

by another person or process.

In this case, close the table and repeat the update function.

• An error like the following may appear if you try to run an update
operation that is identical to one that you just ran:

??? Error using ==> database.update
Error:Commit/Rollback Problems

Examples Example 1 — Update an Existing Record

Using dbtoolboxdemo data source, update a record in the
inventoryTable table using the database connection conn, where
productNumber is 1, replacing the current value for Quantity with 2000.

1 Define a cell array containing the column name that you are
updating, Quantity.

colnames = {'Quantity'}

2 Define a cell array containing the new data, 2000.

exdata(1,1) = {2000}

3 Run the update.

update(conn, 'inventorytable', colnames, exdata, ...
'where productNumber = 1')

5-180

update

Example 2 — Roll Back Data After Updating a Record

Using dbtoolboxdemo data source, update the column Price in the
inventoryTable table for the record selected by whereclause, using
data contained in the cell array exdata. The AutoCommit flag is off.
The data is rolled back after the update operation is run.

1 Set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off')

2 Define a cell array containing the new data, 30.00.

exdata(1,1) = {30.00}

3 Define a where clause.

whereclause = 'where productNumber = 1'

4 Update the Price column.

update(conn, 'inventoryTable', {'Price'}, exdata, whereclause)

5 Because the data was not committed, you can roll it back.

rollback(conn)

The update is reversed; the data in the table is the same as it was
before you ran update.

Example 3 — Update Multiple Records with Different
Constraints

Using dbtoolboxdemo data source, given the table inventoryTable,
where column names are 'productNumber', 'Quantity', and 'Price':

A = 10000
B = 5000

5-181

update

Assign productNumbers with values of 5 and8 to have a new Quantity
with the values of A and B:

update(conn, 'inventoryTable', {'Quantity'}, {A;B}, ...
{'where productNumber = 5';'where productNumber = 8'})

See Also commit | database | fastinsert | rollback | set

5-182

versioncolumns

Purpose Automatically update table columns

Syntax vl = versioncolumns(dbmeta, 'cata')
vl = versioncolumns(dbmeta, 'cata', 'sch')
vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab')

Description vl = versioncolumns(dbmeta, 'cata') returns a list of columns that
automatically update when a row value updates in the catalog cata, in
the database whose database metadata object is dbmeta resulting from
a database connection object.

vl = versioncolumns(dbmeta, 'cata', 'sch') returns a list of
all columns that automatically update when a row value updates in
the schema sch, in the catalog cata, for the database whose database
metadata object is dbmeta resulting from a database connection object.

vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab') returns a
list of columns that automatically update when a row value updates in
the table tab, the schema sch, in the catalog cata, for the database
whose database metadata object is dbmeta resulting from a database
connection object.

Examples Get a list of which columns automatically update when a row in the
table BONUS updates, in the schema SCOTT, in the catalog orcl, for the
database metadata object dbmeta.

vl = versioncolumns(dbmeta,'orcl','SCOTT','BONUS')
vl =

{}

The results are an empty set, indicating that no columns in the database
automatically update when a row value updates.

See Also columns | dmd | get

5-183

width

Purpose Return field size of column in fetched data set

Syntax colsize = width(cursor, colnum)

Description colsize = width(cursor, colnum) returns the field size of the
specified column number colnum in the fetched data set curs.

Examples Get the width of the first column of the fetched data set, curs:

colsize = width(curs, 1)

colsize =

11

The field size of column one is 11 characters (bytes).

See Also attr | cols | columnnames | fetch | get

5-184

Index

IndexA
advanced query options in VQB 3-27
All option in VQB 3-27
arrays

data format 5-158
data format in VQB 3-9

attr 5-2
Attributes 5-96
attributes of data

attr function 5-2
AutoCommit

setting status 5-152
status via get 5-95

B
bestrowid 5-4
BINARY data types

retrieving with functions 4-25
retrieving with VQB 3-51

BOOLEAN data type
retrieving 5-24 5-86
VQB 3-54

C
Catalog 5-95
CatalogName 5-98
cell arrays

data format 5-158
for query results 4-4
setting data format in VQB 3-6

charting
query results 3-19

Charting dialog box 3-19
clearwarnings 5-5
close 5-6
cols 5-8
ColumnCount 5-98
ColumnName 5-98

columnnames 5-9
exporting example 4-15

columnprivileges 5-10
columns 5-11

automatically updated 5-183
cross reference 5-14
exported keys 5-66
foreign key information 5-104
imported key information 5-104
names, via attr 5-2
names, via columnnames 5-9
names, via columns 5-11
number 5-8
optimal set to identify row 5-4
primary key information 5-128
privileges 5-10
width 5-184

ColumnTypeName 5-98
columnWidth 5-2
commit 5-12
Condition in VQB 3-29
confds

function reference 5-13
Configure Data Source dialog box 5-13
connection

clearing warnings for 5-5
close function 5-6
database, opening (establishing),

example 4-3
information 5-126
JDBC 5-95
messages 5-95
object 4-3
properties, getting 5-94
properties, setting 5-151
read only 5-120
status 5-126
status, example 4-3
time allowed for 5-122
time allowed for, example 4-3

Index-1

Index

validity 5-115
warnings 5-95

constructor functions 4-36
crossreference 5-14
currency 5-2
Current clauses area in VQB

example 3-30
cursor

attributes 5-96
close function 5-6
creating via fetch 5-17
data element 5-96
error messages 5-96
objects

example 4-3
opening 4-3
properties 5-151
properties, example 5-94
resultset object 5-137

Cursor 5-96
cursor.fetch 5-17

D
data

attributes 5-2
column names 5-9
column numbers 5-8
commit function 5-12
committing 5-152
displaying results in VQB 3-15
exporting 5-68 5-109
field names 5-9
importing 5-17
information about 4-5
inserting into database 4-17
replacing 4-12
rolling back 5-138
rolling back, via set 5-152
rows function 5-139

unique occurrences of 3-27
updating 5-179

Data 5-96
Data Explorer

starting 5-49
data format 5-158

Database Toolbox 3-9
preferences for retrieval 5-158
preferences in VQB 3-6

data sources
defining

JDBC 5-13
JDBC

accessing 2-4
modifying 2-5
removing 2-6
updating 2-5

ODBC connection 5-95
ODBC, on system 5-103

data types 5-2
BINARY, retrieving with functions 4-25
BINARY, retrieving with VQB 3-51
OTHER, retrieving with functions 4-25
OTHER, retrieving with VQB 3-51
supported 1-5

database
connecting to, example 4-3
example 4-3
JDBC connection 5-95
metadata objects

creating 5-50
properties 5-94
properties supported 5-175

supported 1-2
Database Toolbox requirements 1-2
database.fetch 5-41
DatabaseObject 5-96
dbdemos 4-1
demos 4-1

dbinfodemo 4-5

Index-2

Index

dbinsertdemo 4-8
dbupdatedemo 4-12

dexplore 5-49
displaying

query results
as chart 3-19
as report 3-21
in MATLAB Report Generator

software 3-22
relationally 3-15

Distinct option in VQB 3-27
dmd 5-50

example 4-27
driver 5-51

example 4-34
object in get function 5-95

driver objects
functions, example 4-34
properties 4-34

drivermanager 5-52
drivermanager objects

example 4-34
properties 5-151
properties, via get 5-94

drivers
JDBC 1-3

troubleshooting 2-7
JDBC compliance 5-117
loading 5-136
ODBC 1-3
properties 5-94
properties, drivermanager 5-52
supported 1-3
unloading 5-178
validity 5-116

Drivers 5-98

E
editing clauses in VQB 3-31

empty field 4-26
error handling

preferences 3-6
error messages

cursor object 5-96
database connection object 5-95

error notification, preferences 5-158
examples

using functions 4-1
exec

example 4-3
with fetch 5-41

exportedkeys 5-66
exporting data

inserting 5-68 5-109
example 4-8
multiple records 4-17

replacing 5-179
replacing, example 4-12

F
fastinsert 5-68
fetch

cursor 5-17
database 5-41

Fetch 5-96
fetchbatchsize

database.fetch 5-41
fetchmulti 5-92
fieldName 5-2
fields

names 5-11
size (width) 5-2

width 5-184
foreign key information

crossreference 5-14
exportedkeys 5-66
importedkeys 5-104

format for data retrieved, preferences 5-158

Index-3

Index

freeing up resources 5-6
functions

equivalent to VQB queries 3-59

G
get 4-35 5-94

properties 4-34
getdatasources 5-103
grouping statements 3-32

removing 3-36

H
Handle 5-95
HAVING Clauses dialog box 3-39
Having in VQB 3-39
HTML report of query results 3-21

MATLAB Report Generator software 3-22

I
images

importing 4-25
VQB 3-51

importedkeys 5-104
importing data

bulk insert
example 4-18

data types
BINARY and OTHER using functions 4-25
BINARY and OTHER using VQB 3-51

empty field 4-26
using functions 5-17

example 4-3
index for resultset column 5-125
indexinfo 5-107
insert 5-109
inserting data into database 4-17
Instance 5-95
isconnection 5-115

isdriver 4-35 5-116
isjdbc 5-117
isNullable 5-98
isnullcolumn 5-118
isreadonly 5-120
isReadOnly 5-98
isurl 5-121

J
Java® Database Connectivity. See JDBC
JDBC

compliance 5-117
connection object 5-95
driver instance 5-95
drivers

supported 1-3
validity 5-116

MAT-file location preference 5-158
SQL conversion to native grammar 5-174
URL

via get 5-95
join operation in VQB 3-47

L
logical data types

retrieving 5-24 5-86
VQB 3-54

logintimeout 5-122
example 4-3
Macintosh platform support 5-122

LoginTimeout
Database connection object 5-95
Drivermanager objects 5-98
example 4-35

LogStream 5-98

M
MajorVersion 5-97

Index-4

Index

MATLAB Report Generator software
display of query results 3-22

memory problems
fetchbatchsize solution 5-41
RowLimit solution 5-17

Message
attr 5-2
cursor object 5-96
database connection object 5-95

metadata objects
database 5-50

example 4-27
resultset 5-140
resultset functions 4-33

methods 4-36
MinorVersion 5-97

N
namecolumn 5-125
nested SQL 3-42
NULL values

detecting in imported record 5-118
preferences for reading and writing 3-6
reading from database 4-14
representation in results 3-8
setdbprefs 5-158
writing to database 3-6

nullable 5-2
numeric data format 5-158

VQB 3-6

O
objects 4-36

creating 4-36
properties, getting 5-94

ObjectType 5-95
ODBC

data sources on system 5-103

drivers 1-3
Open Database Connectivity. See ODBC
Operator in VQB 3-31
ORDER BY Clauses dialog box 3-37
Order by option in VQB 3-36
OTHER data types

retrieving with functions 4-25
retrieving with VQB 3-51

P
parentheses, adding to statements 3-32
ping 5-126

example 4-3
platforms 1-2
precision 5-2
preferences

for Visual Query Builder 3-6
primary key information 5-14
primarykeys 5-128
privileges

columns 5-10
tables 5-176

procedurecolumns 5-130
procedures 5-132
properties

database metadata objects 5-175
example 4-28

drivers 4-34
getting 5-94
setting 5-151

Q
queries

accessing subqueries in multiple tables 3-42
accessing values in multiple tables 3-47
displaying results

as chart 3-19
as report 3-21

Index-5

Index

in MATLAB Report Generator
software 3-22

relationally 3-15
ordering results 3-36
refining 3-29
results 5-96

querybuilder 5-134
querytimeout 5-135
quotation marks

in table and column names 1-7

R
readonly 5-2
ReadOnly 5-95
refining queries 3-29
register 5-136
Relation in VQB 3-29
relational display of query results 3-15
replacing data 4-12

update function 5-179
reporting query results

MATLAB Report Generator software 3-22
table 3-21

reserved words
in table and column names 1-7

resultset 5-137
clearing warnings for 5-5
closing 5-6
column name and index 5-125
metadata objects 4-33

creating 5-140
properties 5-94

properties 5-94
ResultSet 5-96
retrieving data

restrictions 1-7
rollback 5-138
RowLimit

get 5-96

set 5-153
rows 5-139

uniquely identifying 5-4
rsmd 5-140
runstoredprocedure 5-149

S
scale 5-2
set 5-151

example 4-35
setdbprefs 5-158

example 4-14
size 4-16
Sort key number in VQB 3-37
Sort order in VQB 3-37
spaces

in table and column names 1-7
speed

inserting data 5-68
SQL

commands 1-4
conversion to native grammar 5-174
join in VQB 3-47
statement

in exec 5-96
in exec, example 4-3
in VQB 3-31

time allowed for query 5-135
where clause 5-179

sql2native 5-174
SQLQuery 5-96
Statement 5-96
status of connection 5-126

example 4-3
stored procedures

in catalog or schema 5-132
information 5-130

string and numeric data format 5-158
structure data format 5-158

Index-6

Index

VQB 3-6
subqueries

in VQB 3-42
Subquery dialog box 3-43
supports 5-175

example 4-31
system requirements 1-2

T
TableName 5-98
tableprivileges 5-176
tables 5-177

example 4-33
index information 5-107
names 5-177
privileges 5-176
selecting multiple for VQB 3-48

time
allowed for connection 5-122
allowed for SQL query 5-135

TimeOut 5-95
TransactionIsolation 5-95
Type 5-96
typeName 5-2
typeValue 5-2

U
ungrouping statements 3-36

unique occurrences of data 3-27
unregister 5-178
update 5-179

example 4-12
URL 5-95

validity 5-121
user name 5-95

V
versioncolumns 5-183
Visual Query Builder

advanced query options 3-27
equivalent Database Toolbox functions 3-59
getting started 3-2
starting 5-134
steps to export (insert) data 3-4
steps to import (retrieve) data 3-2

VQB. See Visual Query Builder

W
Warnings 5-95
warnings, clearing 5-5
where clause 5-179
WHERE Clauses dialog box 3-29
Where option in VQB 3-29
width 5-184
writable 5-95

Index-7

	toc
	Before You Begin
	Working with Databases
	Connecting to Databases
	Platform Support
	Database Support
	Driver Support
	Structured Query Language (SQL)

	Data Type Support
	Data Retrieval Restrictions
	Spaces in Table Names or Column Names
	Quotation Marks in Table Names or Column Names
	Reserved Words in Column Names

	Working with Data Sources
	Setting Up ODBC Data Sources
	Setting Up JDBC Data Sources
	Accessing Existing JDBC Data Sources
	Modifying Existing JDBC Data Sources
	Removing JDBC Data Sources
	Troubleshooting JDBC Driver Problems
	Database Connection Error Messages
	Database Explorer Error Messages
	Using the Native ODBC Database Connection
	About the Native ODBC Interface
	Native ODBC Interface Workflow
	Connect to the Database Using the Native ODBC Interface
	Import Data Using the Native ODBC Interface
	Export Data Using the Native ODBC Interface
	Native ODBC, ODBC/JDBC Bridge and JDBC Interface Comparison
	Compatibility and Limitations

	Using Visual Query Builder
	Getting Started with Visual Query Builder
	What Is Visual Query Builder?
	Using Queries to Import Data
	Using Queries to Export Data

	Working with Preferences
	Specifying Preferences

	Preference Settings for Large Data Import
	Will All Data (Size n) Fit in a MATLAB Variable?
	Will All of This Data Fit in the JVM Heap?
	How Do I Perform Batching?
	Method 1 — Data Does Not Fit in MATLAB Variable or JVM Heap
	Method 2 — Data Does Fit In MATLAB Variable But Not in JVM Heap
	Method 3 — Data Fits in MATLAB Variable and JVM Heap

	Displaying Query Results
	How to Display Query Results
	Displaying Data Relationally
	Charting Query Results
	Displaying Query Results in an HTML Report
	Displaying Query Results with MATLAB Report Generator

	Fine-Tuning Queries Using Advanced Query Options
	Retrieving All Occurrences vs. Unique Occurrences of Data
	Retrieving Data That Meets Specified Criteria
	Grouping Statements
	Removing Grouping of Statements

	Displaying Results in a Specified Order
	Using Having Clauses to Refine Group by Results
	Using the HAVING Clauses Dialog Box
	Example: Using Having Clauses

	Creating Subqueries for Values from Multiple Tables
	Creating Queries That Include Results from Multiple Tables
	Additional Advanced Query Options

	Retrieving BINARY and OTHER Data Types
	Importing and Exporting BOOLEAN Data
	Importing BOOLEAN Data from Databases
	Exporting BOOLEAN Data to Databases

	Saving Queries in Files
	About Generated Files
	VQB Query Elements in Generated Files

	Using Database Explorer
	About Database Explorer
	Workflow
	Configure Your Environment
	Before You Begin
	Set Up the dbtoolboxdemo Data Source
	Configure ODBC Data Sources
	Configure JDBC Data Sources
	Connect to Data Source

	Database Connection Error Messages
	Set Database Preferences
	Display Data from a Single Database Table
	Join Data from Multiple Database Tables
	Define Query Criteria to Refine Results
	Query Rules Using the SQL Criteria Panel
	Query Example Using a Left Outer Join
	Work with Multiple Databases
	Import Data to the MATLAB Workspace
	Save Queries as SQL Code
	Generate MATLAB Code

	Using Database Toolbox Functions
	Getting Started with Database Toolbox Functions
	Importing Data from Databases
	Viewing Information About Imported Data
	Exporting Data to New Record in Database
	Replacing Existing Database Data with Exported Data
	Exporting Multiple Records from the MATLAB Workspace
	Exporting Data Using the Bulk Insert Command
	Bulk Insert to Oracle
	Bulk Insert to Microsoft SQL Server 2005
	Bulk Insert to MySQL

	Retrieving Image Data Types
	Working with Database Metadata
	Accessing Metadata
	Resultset Metadata Objects

	Using Driver Functions
	About Database Toolbox Objects and Methods
	Using the exec Function
	About the exec Function
	Using Cursor Objects
	Working with Microsoft Excel
	Database Considerations

	Using the fetch Function
	About the fetch Function
	fetch Workflow
	Using fetch with a Cursor Object
	Database Considerations

	Functions — Alphabetical List
	Example 3 — Set the AutoCommit Flag to Off and Commit Data

	Index

	tables
	Connection Error Messages and Probable Causes
	Database Explorer Error Messages and Probable Causes
	Connection Error Messages and Probable Causes
	DataReturnFormat and ErrorHandling Properties and Values for set
	Null Data Handling Properties and Values for setdbprefs
	Other Properties and Values for setdbprefs (Not Accessible via Q

